首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
舰船舱室通风系统效能评估   总被引:1,自引:1,他引:0  
大型舰船舱室多采用半封闭或全封闭式设计,需要通过机械通风系统对舱室进行通风换气。本文根据大型舰船舱室密闭环境特点,结合2艘典型舰船舱室通风系统换气效果试验,建立舱室通风换气的数学模型,计算对比了通风换气期间舱室污染物的浓度变化情况,并提出有效通风量作为性能参数来评估舱室通风换气系统效能,直观地反映舰船舱室通风换气效果。该研究可为舰船舱室通风系统的设计及优化提供一定的指导。  相似文献   

2.
王雨娇 《舰船科学技术》2022,(19):114-117+161
舱室的空气质量与温度不仅会影响船员的生活质量,也会给舱室内的货物与运行元器件产生负面影响。为了保证舱室的温度与风量控制水平,优化设计基于模糊控制理论的舱室通风散热系统。根据舱室内元件发热原理以及空气流通机理,构建舱室散热数学模型。在舱室环境中装设温度传感器以及通风机、制冷机等执行器,根据传感器采集的环境参数,计算舱室通风量与散热量。改装舱室通风散热模糊控制器,在模糊控制理论的支持下,生成舱室通风散热控制指令,通过通风散热执行器的驱动,实现舱室的通风散热功能。将设计系统应用到实际的舱室环境中。与传统系统相比,优化设计系统的通风量产生误差降低了3.92cmm,空气密度控制误差降低了0.0055kg/m3,且能够使舱室控制温度更接近目标值。  相似文献   

3.
船舶舱室通风方式直接决定各区域内部的空气质量。实验研究和传统的计算流体力学算法耗时较长,为此将多区域网络通风模型引入到舱室通风控制策略的影响研究中。以典型舱室和通风系统结构为基础,采用多区域污染物传播算法,获得不同通风控制策略下的各区域污染物浓度变化规律。结果表明,基于浓度反馈控制的通风策略与基于时间或新风量控制的通风策略相比,能够降低10%的空气质量超标风险,在空气质量保障和节能运行上具有显著优势。  相似文献   

4.
鉴于有限元法(FEM)和统计能量法(SEA)在求解中频段船舶结构振动噪声问题中的有限性,引入有限元—统计能量(FE-SEA)混合法。介绍其基本原理的基础上,运用VA One振动噪声分析软件,采用有限元法、FE-SEA混合法和统计能量法分别求解低频、中频和高频段高速船舱室噪声,以此实现高速船舱室噪声问题的全频段分析。通过对比仿真值与实验值,证明应用FE-SEA混合法预报高速船中频段舱室噪声问题是有效可行的。  相似文献   

5.
金键  仲晨华  牟金磊  王欣 《船海工程》2015,(3):16-18,22
分析舰船舷侧舱室圆形开口处的空气流动情况,利用不可压缩理想流体的伯努利方程推导出基于圆形开口的舱室通风因子公式。利用Pyrosim数值模拟软件对4组不同半径圆形开口下的舷侧舱室进行火灾模型,将得到的空气流入速率数据与2组公式的计算结果进行比较,发现新推出的基于圆形开口通风因子公式更具准确性,在相同开口面积的空间火灾中,相比矩形开口,圆形开口可为火灾燃烧提供更多新鲜空气。  相似文献   

6.
陈豪  郭磊  华呈新 《船舶》2019,30(4):1-6
船上有些空间大、人员集中、船体结构复杂的舱室,传统送风方式难以满足需求,给空气环境设计带来很大挑战。文章采用计算流体力学方法研究置换通风系统在船舶舱室中的应用,通过建立物理和数值计算模型,在设计初始阶段对其进行气流组织、热舒适性等方面的模拟分析和优化应用研究;针对某实船舱室的置换通风系统原始方案和优化方案进行对比分析,结果表明置换通风系统具有流动分层和垂直温度梯度的特点。相比原始方案,优化方案使舱室内温度、风速和热舒适性指标等得到优化,有效降低了吹风感,保证人体周围的空气品质,热舒适性指标也符合标准要求。对船舶置换通风系统的应用研究具有借鉴意义。  相似文献   

7.
运用AutoSEA2软件对某高速船舶噪声问题进行计算分析,讨论舷外水对舱室噪声传播的影响.研究发现:舷外水对高速船舶舱室降噪有10%以内的贡献,并且随着舱室与激励源的距离增大,舷外水的降噪效果也随之更加明显.  相似文献   

8.
9.
10.
王大安  张凯 《中国水运》2014,(10):23-24
船舶运输中,由于各种原因导致封闭舱室内二氧化碳浓度过高、缺氧及一氧化碳等有毒气体的产生,是船上人员窒息中毒死亡的客观因素,也是主要原因;同时,船员缺乏封闭舱室培训、经验不足、思想麻痹和预防措施不当也是发生此类事故的重要因素。所以要预防事故,必须加强培训,按章行事,规范操作程序。  相似文献   

11.
基于现有小型航标船的应用分析,结合连云港港30万吨级航道配套新型航标工作船的设计研究,对小型航标船的关键技术特点、作业方式、主尺度确定、主要设备选型、舱室舾装节能技术、测量和通讯、无线电定位监测系统等进行了分析阐述,为小型航标船的设计提供参考和设计思路。  相似文献   

12.
高速型船舶振动响应计算分析   总被引:1,自引:1,他引:0  
高速船航速高、刚度小、激振力大且频率高,在设计过程中振动是一个非常突出的问题。本文采用有限元模态分析方法对高速船振动敏感位置进行固有频率与振动响应的计算,提出适用于高速船振动强度的计算方法,对高速船的设计与建造具有指导意义。  相似文献   

13.
滑行艇高速航行时的数值模拟(英文)   总被引:1,自引:0,他引:1  
Planing vessels are applied widely in civil and military situations.Due to their high speed,the motion of planning vessels is complex.In order to predict the motion of planning vessels,it is important to analyze the hydrodynamic performance of planning vessels at high speeds.The computational fluid dynamic method(CFD) has been proposed to calculate hydrodynamic performance of planning vessels.However,in most traditional CFD approaches,model tests or empirical formulas are needed to obtain the running attitude of the planing vessels before calculation.This paper presents a new CFD method to calculate hydrodynamic forces of planing vessels.The numerical method was based on Reynolds-Averaged Navier-Stokes(RANS) equations.The volume of fluid(VOF) method and the six-degrees-of-freedom equation were applied.An effective process was introduced to solve the numerical divergence problem in numerical simulation.Compared with experimental results,numerical simulation results indicate that both the running attitude and hydrodynamic performance can be predicted well at high speeds.  相似文献   

14.
Ship hull form of the underwater area strongly influences the resistance of the ship.The major factor in ship resistance is skin friction resistance.Bulbous bows,polymer paint,water repellent paint(highly water-repellent wall),air injection,and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships.Micro-bubble injection is a promising technique for lowering frictional resistance.The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction.The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat(FPB) 57 m type model with the following main dimensions:L=2 450 mm,B=400 mm,and T=190 mm.The influence of the location of micro bubble injection and bubble velocity was also investigated.The ship model was pulled by an electric motor whose speed could be varied and adjusted.The ship model resistance was precisely measured by a load cell transducer.Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number.It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction,and the drag reduction caused by the micro-bubbles can reach 6%-9%.  相似文献   

15.
16.
王玉成  陈远超 《船舶工程》2015,37(S1):50-54
为了精确获得高速船的航行阻力,计及航行姿态变化对其阻力的影响。基于CFD理论,本文通过耦合求解计及黏性的RANS和船体运动方程的方式实时预报船体受力,船体根据受力进行姿态调整,最终达到平衡,以此预报船舶在高速运动稳定后的航行姿态及阻力。并将一系列的数值计算结果与试验数据对比分析,数值计算结果和实验数据吻合良好。船舶设计工作者可以参考数值计算结果辅助船体型线设计,其具有重要的工程应用价值。  相似文献   

17.
张太佶 《船舶》2008,19(2):1-7
布缆船和海缆作业设备的发展、我国中型布缆船更新的形势和基本要求以及国外布缆船的技术特点等作了简要的介绍,并从相关技术的研发动态、趋势等方面指出中型更新代布缆船进入研制日程的必要性,并探讨了拟建布缆船的若干问题。  相似文献   

18.
Ships which have large structures above water surface, such as pure car carriers (PCCs) and container vessels, have large speed reduction by wind pressure. In the present study, the running speed of a large PCC with two or more sails for using wind power is simulated. The simulated results demonstrate that the ship can keep a constant service speed even in winds of 20m/s except head and bow winds. This sail system can shorten annual average navigation time by about 4 hours per voyage.  相似文献   

19.
李鹏 《中国舰船研究》2019,28(S1):66-72, 107
  目的  附体阻力是舰船阻力的重要组成之一,其中轴支架阻力在附体阻力中所占的比例较高。将通过对轴支架开展阻力优化分析,来实现舰船减阻的目的。  方法  首先,选取轴支架设计参数,并以船体表面流线对应的迎流角确定轴支架初始方案;然后利用CFD仿真分析设计航速下的船体表面速度矢量、支架臂翼型剖面流线、支架臂表面的压力分布以及空间流线,并以支架臂翼型剖面所在平面内的流线为参考进行轴支架多方案设计;最后,对CFD仿真结果进行对比。  结果  结果显示,采用支架臂翼型剖面所在平面内的流线进行轴支架设计较为合理,在缩比模型下,方案1与初始方案相比总阻力减小了3.5%,支架臂内、外侧压力分布较为均匀。  结论  利用支架臂翼型剖面内的流线确定剖面迎流角的设计方法,可为舰船附体设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号