首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
[目的]潜艇外壳表面敷设的水下吸声覆盖层在高静水压力作用挤压后的形状、材料参数都会发生改变,使吸声性能受到较大影响,故研究此影响对于潜艇声隐身性具有重要意义.[方法]考虑空腔内压力对静压下覆盖层形变的作用及吸声性能的影响,基于轴对称有限元仿真,计算含圆柱形空腔水下吸声覆盖层的单胞变形;将形变量导入吸声覆盖层的一维理论模...  相似文献   

2.
涂层隐身是水下目标声隐身的一个主要方法.针对水雷的特点,本文研究了水下目标覆盖薄吸声涂层的高频反射特性.根据垂直入射时多层介质的声传播理论,利用多层均匀复合结构的传递矩阵,研究了水中多层结构的高频反射特性,通过Matlab编程仿真了高频下覆盖薄吸声涂层时吸声涂层的厚度,杨氏模量,损耗因子对反射系数的影响.最后对吸声涂层的厚度对反射系数的影响进行了试验研究.结果表明,在高频范围目标表面覆盖薄吸声涂层可以有效减小目标回波信号强度,提高其声隐身能力.  相似文献   

3.
声子晶体覆盖层是一种常见的声学材料,因其特有的声传播方式而得到广泛的关注.本文首先利用声子晶体能带结构理论,并结合COMSOL有限元软件,研究声子晶体色散关系与覆盖层吸声性能之间的关系.然后进一步讨论了声子晶体能带范围、振子材料类型、平面波入射角度等对覆盖层吸声性能的影响,对研究声子晶体覆盖层吸声机理提供参考.  相似文献   

4.
针对声学覆盖层低频吸声问题,建立将局域共振结构内嵌到空腔覆盖层的复合结构,通过分析模态振型和振动位移云图得出其吸声机理,以复合结构的几何参数和材料参数为控制变量,以10~1 000 Hz频段内的吸声系数最大为优化目标,以Nelder-mead单纯形法为优化方法,对建立的模型进行优化设计。研究结果表明:1)复合结构的吸声机理为下半部分空腔变形实现纵波向横波的转化,局域共振结构的向上振动消耗声能,二者共同作用,提高吸声系数;2)复合结构经几何参数优化和材料参数优化后,吸声系数分别提高了13%和26%;3)吸声性能提高的原因为优化后,局域共振结构在更低频处出现反共振振型,结构动能密度较优化前提高了一个数量级,因此吸声性能提高。研究结果可为声学覆盖层的设计提供理论基础。  相似文献   

5.
针对圆柱形空腔吸声覆盖层低频吸声性能比较差,建立多层材料圆柱形空腔结构覆盖层的COMSOL有限元模型,通过采用波导有限元-传递矩阵法对有限元模型的验证并对其进行吸声特性数值仿真分析。结果表明:理论计算与数值仿真的曲线趋势大致吻合则该有限元模型有效;多层材料吸声覆盖层低频吸声特性明显优于单层材料吸声覆盖层,并且采用不同穿孔率、损耗因子、杨氏模量等参数的变化分析了各种参数的变化对吸声系数曲线的影响,为下一步的声学优化提供了具体指导。  相似文献   

6.
针对圆柱形空腔吸声覆盖层低频吸声性能比较差,建立多层材料圆柱形空腔结构覆盖层的COMSOL有限元模型,通过采用波导有限元-传递矩阵法对有限元模型的验证并对其进行吸声特性数值仿真分析。结果表明:理论计算与数值仿真的曲线趋势大致吻合则该有限元模型有效;多层材料吸声覆盖层低频吸声特性明显优于单层材料吸声覆盖层,并且采用不同穿孔率、损耗因子、杨氏模量等参数的变化分析了各种参数的变化对吸声系数曲线的影响,为下一步的声学优化提供了具体指导。  相似文献   

7.
变截面圆柱形空腔覆盖层吸声系数的二维近似解   总被引:7,自引:0,他引:7  
具有空腔周期性排列的粘弹性结构在水声工程中有着广泛的应用.将包含变截面圆柱形空腔周期性排列的吸声覆盖层的一个单元进行分段近似成多层圆柱管结构,并应用子域分割法在分段的接合界面处满足平均轴向位移和平均轴向应力连续,给出了变截面圆柱形空腔吸声覆盖层吸声系数的二维近似解.分析了高阶传播波和分段层数对吸声系数的影响,比较了不同空腔形状对覆盖层吸声性能的影响.研究结果表明,在一定频率范围内,主要是最低阶传播模式对吸声性能起作用,喇叭型空腔结构较圆柱型空腔结构吸声覆盖层的吸声性能更加优良.在覆盖层设计中,空腔的形状应有一个优化的过程.  相似文献   

8.
商超  张嘉钟  魏英杰 《船舶力学》2010,14(12):1425-1431
基于有限单元法研究了以空气为背衬的含圆台型空腔的声学覆盖层的吸声特性.对单腔结构的覆盖层和混合型空腔的覆盖层的吸声性能进行了数值分析.结果表明,在相同穿孔率的情况下,含圆台型空腔的覆盖层相对含圆柱型空腔的覆盖层具有更优良的吸声性能.  相似文献   

9.
为改善低频吸声性能,提出一种基于充水金属球壳的吸声覆盖层结构,并利用有限元方法对其吸声特性开展数值仿真分析。结果表明:充水球壳的引入能改善原有橡胶基层的吸声性能;通过多个不同几何参数的球壳组合,吸声覆盖层的低频性能得到显著提升;球壳中的弹性球应采用模量较大的橡胶材料制备,否则在静水压强下,吸声覆盖层无法保持原有性能;吸声覆盖层的吸声机理由低频时弹性球的共振、中高频时组合结构耦合共振引起的基体材料形变、耦合共振对声波散射作用增强3部分构成。  相似文献   

10.
为了提高声学覆盖层的仿真精度,改进原有的计算参数模型.基于集总参数法和传递矩阵法,提出声学覆盖层的一维等效模型.结合有限元法对声学覆盖层计算,计算结果表明,阻尼对吸声效率有显著作用,不同类型阻尼对吸声作用不同,结构阻尼主要影响低频区,粘性阻尼主要影响高频段.根据橡胶材料特性,结合数值计算的结果,提出一种计权的复合阻尼模...  相似文献   

11.
基于声波垂直入射下的二维解析公式,利用COMSOL软件建立椭球形空腔吸声覆盖层模型并与静压下穿孔率的理论公式进行对比,验证模型的有效性;利用所建模型分析了静压下多层材料椭球形空腔的吸声性能.结果表明:在静水压力条件下,多层材料吸声覆盖层的低频吸声性能比常压的要好,中高频方面两者相差不大;穿孔率25%下的吸声覆盖层在低频和高频的表现比穿孔率33.3%和穿孔率50%的吸声覆盖层要好,静压下穿孔率越大并不代表改善吸声覆盖层低频吸声性能越好;静压下多层材料吸声覆盖层随着压力的增大,椭球形空腔的形变量和覆盖层厚度的压缩量越大.  相似文献   

12.
在深入研究消声瓦吸声机理的基础之上,分析不同结构参数和材料参数对消声瓦吸声性能的影响。由此可见对消声瓦吸声性能的研究,是寻求消声瓦参数之间最佳匹配的基础,这对于研制高性能的消声瓦有着重要的理论意义。  相似文献   

13.
为了达到水下声隐身的目的,必须对水声吸声材料进行研究。聚氨酯弹性体材料因其独特的分子结构和可设计性得到广泛应用。考虑用其作为水声吸声材料,但该材料的合成工艺影响因素很多,进行合理的工艺设计可以大大减少试验量。本文从聚氨酯弹性体的微相分离和微观阻尼吸声机理出发,研究设计了聚氨酯弹性体水声吸声材料的合成工艺,并根据该工艺参数制作了聚氨酯弹体声学测试试样,在脉冲声管中测试了试样的吸声系数,测试结果表明所设计的工艺参数是合理的。  相似文献   

14.
根据波导有限元-传递矩阵法建立了背衬条件下的多层材料吸声覆盖层的理论模型并与仿真软件COMSOL建立的有限元模型对比证明模型有效。在COMSOL模型的基础上讨论了单层壳体背衬和双层壳体背衬条件下的覆盖层的吸声性能并比较了在双层壳体背衬条件下不同空腔结构的吸声性能。结果表明:单层壳体背衬条件下,随着钢背衬厚度增大,吸声波峰向低频移动但峰值变小;两层壳体的水层厚度增大,波峰向低频移动,波峰渐渐增多,峰值减小;在非耐压壳体厚度增大时,三种厚度情况下的吸声系数曲线大致相同说明外壳厚度对于吸声系数的影响很小;圆柱型空腔在低频表现稍好一些,而椭球型空腔在整体表现均好于其余两种情况。  相似文献   

15.
将复合材料壳板代替钢质壳板,建立了复合材料壳板结构的水中声学计算模型。从水声波动学方程出发,推导了不同终端边界条件下的传递矩阵、声反射系数和吸声系数,并通过试验研究证明了运用传递矩阵法进行声学设计的可靠性;考虑表层阻抗,吸声层厚度、损耗因子,及水层厚度的影响,应用数值方法对水中复合材料壳板结构进行了声学设计,分析了各参数对结构反射系数和吸声系数的影响规律。  相似文献   

16.
基于有限元法的Alberich型覆盖层吸声特性研究   总被引:1,自引:0,他引:1  
商超  魏英杰  张嘉钟  曹伟 《船舶力学》2011,15(4):443-448
基于有限元法研究了附在钢板上并以空气为背衬的Alberich型覆盖层的吸声特性。通过采用无反射流体吸声边界,可以较少的单元很好地模拟无限声学流场。并针对混合型空腔结构进行了吸声特性的分析,有限元分析结果表明,该空腔结构的吸声特性明显优于相同穿孔率的单腔结构。  相似文献   

17.
多层声学覆盖层复合的有限长弹性圆柱壳声辐射特性研究   总被引:2,自引:0,他引:2  
白振国  俞孟萨 《船舶力学》2007,11(5):788-797
针对水下双层圆柱壳内外壳体各表面敷设隔声阻尼层的情况,建立了有限长多层复合加实肋板的双层圆柱壳水下声辐射计算模型.对模型采用模态展开法,系统考虑壳体与隔声层和实肋板耦合,外表面声学覆盖层作用和外部声场耦合,并以状态矢量对应的矩阵形式导出复合壳体辐射声功率的计算表达式.数值计算了隔声阻尼层和外场声学覆盖层层参数,实肋板参数和壳体阻尼对模型辐射声功率的影响.研究结果表明:有实肋板时阻尼层的降噪量最高接近15dB,实肋板的声短路作用限制了隔声阻尼层的降噪效果;双层隔声阻尼层比单层隔声阻尼层降噪效果好3-4dB.外场声学覆盖层受实肋板影响较阻尼层小,其降噪量达10dB左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号