首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
针对重载铁路弹性支承块式无砟轨道(LVT)在实际应用中出现的弹性部件变形过大、易损坏等问题, 优化设计了既有弹性支承块, 将支承块短侧边坡度由1∶17.00调整为1∶4.85, 取消了块下垫板, 并采用一体化弹性套靴; 为验证设计成果, 建立了传统型LVT和改进型LVT足尺模型, 采用质量为1 120 kg的重载货车轮对, 以20 mm的落高进行落轴冲击试验, 分别从时域和频域角度对比分析了冲击作用下竖向振动在钢轨、支承块、道床板、底座板及地面等结构部件沿线路纵、竖、横向的传递衰减特性。研究结果表明: 轮轨产生的高频振动能量沿钢轨纵向传递, 低频振动能量传递给下部其他轨道结构; 竖向冲击振动在纵、竖向传递的过程中不断衰减且衰减速率逐渐降低, 在支承块和道床板表面横向传递过程中, 向外侧边缘传递振动增大; 相比传统型LVT, 改进型LVT整体弹性系数减小21.1%, 而阻尼系数增大5.4%, 其振动周期、衰减时长、振动峰值分别比传统型LVT小37.0%、21.3%和3.4%, 各结构部位功率谱密度峰值比传统型LVT小30%以上; 改进型LVT轨道结构各部位Z振级比传统型LVT小, 在地面处减小了3.65 dB, 能更有效、迅速地衰减轮轨冲击力和轨道结构振动, 振动水平更低, 降低了冲击作用对环境的影响。研究结果对于开展LVT减振性能试验验证、优化与工程应用有参考价值。   相似文献   

2.
视车辆、轨道为整个系统,车辆模拟为由弹簧和阻尼器连接的多刚体,具有15个自由度,轨道模拟为两根离散粘弹性基础支承的长梁。运用弹性系统力学总势能不变值原理和形成矩阵的“对号入座”法则,建立车辆.轨道系统的运动方程。研究了左右钢轨不对称不平顺、左右钢轨的不对称支承、车辆移动速度以及钢轨类型对车辆一轨道系统响应的影响。  相似文献   

3.
针对路基上双块式无砟轨道的结构形式,建立钢轨-扣件-轨下垫板-双块式轨枕-道床板-混凝土底座-弹性基础的有限元分析模型,应用大型国际通用有限元分析软件ABAQUS,对比分析不同的扣件刚度、不同的支承层厚度以及支承层弹性模量的变化对于路基上双块式无砟轨道结构的影响,为我国无砟轨道的结构设计和工程实践提供依据。  相似文献   

4.
为确定双块式无砟轨道道床板的合理单元长度,采用数值模拟的方法分析了列车荷载、纵、横向荷载、温度力、温度梯度作用下不同单元长度轨道结构的应力、应变响应;在此基础上,计算了不同长度单元板的裂缝宽度及所需的最小配筋率.现场试验结果表明:单元板长度越大,内部应力、板端位移量和板中裂缝宽度越大,满足裂缝宽度限值的配筋率越大;单元双块式无砟轨道板的长度宜小于8.0 m,推荐兰新二线采用长6.5 m的单元双块式无砟轨道道床板.   相似文献   

5.
结合衢宁铁路福建段隧道内弹性支承块式无砟轨道的施工,介绍弹性支承块式无砟轨道精调、道床施工工艺、创新施工方法等,为类似工程提供借鉴。  相似文献   

6.
不同无砟轨道类型对车辆动力学特性影响的数值分析   总被引:1,自引:1,他引:0  
利用车辆-轨道耦合动力学理论,建立了不同类型无砟轨道垂向耦合动力学模型,分别计算了整体式无砟轨道、板式无砟轨道以及浮置板式无砟轨道在列车运行下的振动响应,分析比较系统振动响应受无砟轨道道床类型、车速、不平顺波深、扣件刚度和板下弹簧刚度的影响。结果表明,系统振动响应均随车速的提高而增大;车速、不平顺波深、扣件刚度和板下弹簧刚度对整体道床式无砟轨道系统振动响应影响最大,板式无砟轨道次之,对浮置板式无砟轨道系统振动响应影响最小;相对而言,浮置板式无砟轨道动力特性最好,其次为板式无砟轨道,整体式无砟轨道的动力特性最差。  相似文献   

7.
为探讨无砟轨道结构温度场分布,通过对成都地区CRTSⅠ型双块式无砟轨道结构冬季温度场监测,分析了不同天气轨道结构温度场的变化规律.基于数理统计方法,提出了成都地区双块式轨道道床板冬季垂向温度荷载模式.研究结果表明:道床板昼夜温度变化较大,支承层温度变化较小,道床板表面最大温差17.50 ℃,支承层底面最大温差0.35 ℃;随深度增大,温度变化幅值减小,道床板温度峰值滞后于气温峰值;轨道结构最大正温差出现在14:30左右,最大负温差出现在约08:00;道床板温度沿深度呈指数函数关系.   相似文献   

8.
结合合福铁路客专闽赣段CRTSI型双块式无砟轨道道床板的施工,介绍CRTSI型双块式无砟轨道轨道精调、道床板施工工艺、创新施工方法,为类似工程提供借鉴。  相似文献   

9.
列车荷载下考虑道床裂纹的无砟轨道受力特性   总被引:2,自引:1,他引:1  
为研究道床裂纹对无砟轨道受力的影响,根据道床裂纹的特点,基于线弹性断裂力学理论,构造20节点六面体奇异等参单元反映裂纹尖端奇异,建立含裂纹的无砟轨道空间有限元模型,分析无砟轨道的受力特性.结果表明:道床裂纹对钢轨和道床板垂向位移影响较小,对道床板中上部混凝土及钢筋受力的影响不明显,道床下层钢筋应力在裂纹处发生突变,静态和动态裂纹宽度基本相同;对于道床底面60 mm等深裂纹,在列车荷载作用下,裂纹处钢筋应力增大为未开裂时的2倍左右,裂纹张开0.017 mm.  相似文献   

10.
移动荷载作用下板式轨道的有限元分析   总被引:15,自引:2,他引:15  
用有限元法分析了板式轨道在移动荷载作用下的动力响应。视板式轨道为如下模型:钢轨为离散粘弹性支点支承的长梁;轨道板为连续粘弹性基础支承的短梁。视板式轨道及移动荷载为一个系统,运用弹性系统动力学总势能不变值原理及形成矩阵的"对号入座"法则建立该系统的振动方程组。研究了移动荷载的速度、钢轨的类型和钢轨支点的弹性系数对钢轨及轨道板动力响应的影响。算例结果表明:在其他参数相同的情况下,增大钢轨支点的弹性系数,钢轨的动力响应减小;使用较重型的钢轨有利于减小钢轨和轨道板的动力响应;随着移动荷载速度的提高,钢轨和轨道板的动力响应增大。  相似文献   

11.
路基上CRTSⅡ型板式轨道裂纹影响分析   总被引:3,自引:0,他引:3  
为分析路基上CRTSⅡ型板式无砟轨道轨道板开裂对车辆和无砟轨道结构的影响,根据弹性地基梁理论、有限元方法和轮轨系统耦合动力学理论,建立了弹性地基梁体的有限元模型和车辆-轨道-路基垂向耦合振动模型.采用大型有限元软件ANSYS/LS-DYNA,分析了轨道板开裂对轨道结构的静、动力学性能和行车性能的影响.分析结果表明:轨道板开裂对轨道结构受力的影响较小,不影响行车的平稳性和安全性;随列车速度增大和轨道板开裂,均会增大轮轨作用力和轨道结构的动力响应;在裂缝地段,应采取减振、隔振、控制轨道几何不平顺等措施降低轨道结构的动力响应;轨道板开裂将影响无砟轨道的耐久性和使用寿命,应及时修补.   相似文献   

12.
为了提升浮置板轨道的减振效果,阻碍浮置板垂向振动能量向轨下基底的传播,提出了一种基于声子晶体局域共振机理的浮置板轨道隔振器. 运用有限元方法研究了声子晶体隔振器的局域共振带隙特性,并验证了带隙频率范围内声子晶体隔振器对振动的抑制作用;计算了声子晶体隔振器的垂向刚度,建立了三维声子晶体隔振器浮置板轨道有限元模型;计算了整体结构的力传递率与基础加速度响应,并与传统钢弹簧浮置板的计算结果进行了对比. 研究结果表明,声子晶体隔振器存在声子晶体局域共振带隙,对50~150 Hz频带内的振动有抑制作用;声子晶体隔振器与传统钢弹簧垂向静刚度相近,均为6.0 kN/mm;保留了钢弹簧浮置板轨道的低固有频率隔振性能,并且在50~120 Hz频带具有带隙抑制特性,在51 Hz附近力传递率可减小10 dB左右;基础加速度响应在51~150 Hz频带内明显小于普通钢弹簧浮置板轨道,其中51~60 Hz频带内基础加速度相比钢弹簧浮置板轨道减小30%左右. 因此声子晶体隔振器有助于提高浮置板轨道的减振性能.   相似文献   

13.
计算模型分为两个部分,列车荷载通过多体动力学软件SIMPACK求得.然后,以有限元软件ANSYS为平台,建立了轨道-隧道-大地三维有限元模型.通过谐响应稳态扫频技术,从频域角度分析定点谐荷载下钢弹簧浮置板轨道引起的大地振动;通过瞬态分析,从时域分析列车荷载下引起的大地振动.结论表明:从频域角度来看,钢弹簧浮置板在接近自身固有频率处会引发地面共振,但影响范围不大;对于中高频有着很好的减振效果.从时域的角度来看,钢弹簧浮置板对应的地表振动远小于整体道床,转频域后其轨道振动分布可按谐响应计算结果解释.  相似文献   

14.
大跨度组合楼盖人致振动分析与实测研究   总被引:3,自引:0,他引:3  
为探讨大跨度组合楼盖的人致振动性能,基于单人脚步荷载模型,结合影响人群行走效应的因素,如人群分布、行走频率等,提出了一种人群激励的随机模拟方法.通过多点输入和时程分析法研究了某大跨度组合楼盖的人致振动反应,设计、研制了多组调谐质量阻尼器,并对该组合楼盖多个振动模态进行综合控制;实测了该大跨度组合楼盖在主体结构完成、整体结构完成2个阶段的动力特性;测试了阻尼器安装前、后组合楼盖在多种人群激励下的竖向加速度反应.研究结果表明:人群激励的类型和行走路线对楼盖振动反应影响显著;大跨度组合楼盖具有典型的模态密集特性,其在多种人群荷载激励下的竖向加速度反应较大;安装多组调谐质量阻尼器后,楼盖的人致振动反应显著降低且均满足人体舒适度的要求.   相似文献   

15.
针对高速列车过站引起的跨线站房车致振动问题,结合某运营客站跨线站房楼板在普速场重载货车正线通过时的车致振动,开展了振动实测,采用有限元方法构建了一致激励条件下的站房结构动力分析模型,开展了重载列车作用下的振动分析,采用1/3倍频程方法进行了振级评价,提出采用TMD (tuned mass damper)消能减振的方式抑制楼板的车致振动响应. 研究结果表明:当正线重载列车通过跨线站房时,楼盖在卓越振动频率(6.3 Hz)附近容易激发共振,且平均加速度振级超出规范容许值11.0~12.6 dB;设计了总质量比为0.1的调谐质量阻尼器后,加速度振级降幅达到13.0~17.0 dB,减振后的振动级水平基本达到标准限值.   相似文献   

16.
为了优化坡道上钢弹簧浮置板轨道的设计, 在考虑轮轨纵向作用关系与钢弹簧浮置板轨道特点的基础上, 运用多体动力学理论和有限元法建立了紧急制动条件下地铁车辆与钢弹簧浮置板轨道动力相互作用模型, 利用多体动力学软件UM验证了模型的有效性, 分析了车辆与轨道的动力响应。研究结果表明: UM软件与本文模型计算得到的车体纵向加速度和轮轨纵向力平均相对误差分别为1.3%、2.8%;在紧急制动过程中, 车体始终处于向前点头和纵向振动的状态, 导致前轮增载, 后轮减载; 由于板与板之间不连续, 钢轨和浮置板之间会产生纵向相对错动, 须注意钢轨与浮置板之间不协调的纵向变形; 间隔2组扣件布置一对隔振器方案(方案1) 所得板端钢轨垂向位移比板中大0.2 mm, 间隔2组扣件布置一对隔振器, 再间隔3组扣件布置一对隔振器方案(方案2) 所得板端钢轨垂向位移比板中小0.5 mm; 2种布置方案下, 轨道纵向变形相差不超过5%, 扣件和钢弹簧受到的纵向作用力相差不超过15%;短波轨道不平顺显著加剧了钢轨和浮置板的垂向振动效应, 不平顺状态下钢轨最大垂向加速度可达15g左右; 钢弹簧浮置板轨道可以降低传递到基础底部的垂向振动, 加速度降幅约为0.2 m·s-2, 但会显著放大低频段钢轨、浮置板的垂向振动, 振动量增幅约为15 dB。   相似文献   

17.
板式轨道动力响应分析方法   总被引:1,自引:0,他引:1  
为了计算在高速车辆移动荷载作用下板式轨道的动力响应,将轨道板视为线性粘弹性连续支承梁,将钢轨视为线性粘弹性点支承梁,将钢轨和轨道板统一划分为有限单元,基于车辆-轨道耦合动力学理论,利用弹性系统动力学总势能不变值原理,建立了高速列车-板式轨道的垂向耦合动力学方程,计算了车辆通过板式轨道钢轨焊接区短波不平顺时的轮轨动力学响应。仿真结果表明:与其他成熟仿真方法相比较,响应变化趋势与幅值基本一致,表明该方法可行。  相似文献   

18.
车辆——轨道耦合系统随机振动响应特性分析   总被引:5,自引:2,他引:3  
基于车辆一轨道耦合动力学理论,通过建立车辆一轨道垂横耦合模型,利用时域数值积分法进行了耦合系统的随机响应分析。在此基础上,采用周期图法估计出车辆一轨道垂向和横向随机响应功率谱密度PSD,并进行了谱分析。最终得到了车辆一轨道耦合系统随机振动的基本规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号