共查询到17条相似文献,搜索用时 78 毫秒
1.
进行了高速列车线路试验, 研究了GPS信号与齿轮箱结构的受力特点, 获取了扭矩载荷和振动载荷作用下齿轮箱的应力时间历程曲线, 分析了在扭矩载荷、振动载荷作用下齿轮箱的应力响应特性, 并编制了应力谱, 利用疲劳损伤影响参数来反映扭矩载荷和振动载荷对齿轮箱疲劳损伤的影响程度。研究结果表明: 在扭矩载荷作用下, 列车牵引与制动的交替变化会使齿轮箱产生较大的应力响应, 最大应力幅值为25.80MPa; 在制动工况下, 齿轮箱应力呈阶梯形变化; 列车低速运行时齿轮箱吊杆座端部的高应力幅值频次大于高速阶段, 结构疲劳损伤影响参数由0.20减小到0.08, 减小了60.0%。在振动载荷作用下, 列车运行速度由350km·h-1减小到200km·h-1时, 齿轮箱吊杆座端部的应力响应强度由2.08MPa减小到0.97MPa, 降低了53.4%;在同一速度等级下, 列车头部齿轮箱的应力幅值低于列车尾部; 列车由牵引状态转变为惰性运行时, 齿轮箱的应力响应强度由3.4MPa减小到1.0MPa, 降低了70.6%;列车由低速运行转为高速运行时, 齿轮箱端部疲劳损伤影响参数由0.009增大到0.260, 增大了27.9倍。 相似文献
2.
以某型高速列车轴箱弹簧为研究对象, 通过载荷标定方法制作了弹簧载荷测试传感器, 安装于动力转向架, 通过在线路测试得到了轴箱弹簧载荷时间历程; 结合车载陀螺仪信号, 分析了启动牵引、制动停车、高低速直线、进出坡道、曲线通过等典型工况下的轴箱弹簧载荷特性; 根据轴箱弹簧载荷的变化特点, 将测试载荷分解为趋势载荷和动态载荷, 并在统计基础上给出轴箱弹簧一定运用里程下的载荷谱, 确定了载荷幅值与载荷作用频次的对应关系, 根据损伤一致性准则, 分析了载荷谱各级载荷造成的损伤比重与轴箱弹簧疲劳损伤随列车运行速度增大的变化规律。分析结果表明: 轴箱弹簧载荷与应变呈线性关系, 其传递系数为9.45×10-5 kN-1; 与非动力侧轴箱弹簧相比, 动力侧轴箱弹簧载荷幅值变化受电机扭矩载荷的影响较大, 在列车启动阶段, 电机输出扭矩达到最大值, 动力侧与非动力侧轴箱弹簧的载荷分别为-7.42、1.26 kN; 列车速度由240 km·h-1增大至350 km·h-1时, 轴箱弹簧趋势载荷由-0.6 kN变化至-2.0 kN, 最大动态载荷由1.53 kN增大至1.86 kN, 增大了22%;动力侧轴箱弹簧在列车低速、高速运行时所产生的疲劳损伤比重分别为0.79、0.75;列车运行速度提高会使轴箱弹簧高幅值载荷产生的疲劳损伤比重略有降低, 这与非动力侧疲劳损伤比重分布特点相吻合; 动力侧和非动力侧轴箱弹簧疲劳损伤随着列车运行速度增大均呈现出先减小后增大的变化趋势, 在列车速度为300 km·h-1附近时达到最小疲劳损伤, 动力侧与非动力侧轴箱弹簧的疲劳损伤分别为0.110、0.004。 相似文献
3.
以某型高速列车转向架构架为对象, 研究了高速列车转向架构架载荷识别与分布特性; 分析了基于动应力响应识别构架载荷的原理并基于截断奇异值法对构架载荷进行了反推识别, 采用核密度估计法对构架载荷极值分布特性进行了分析, 基于3σ准则获得了不同出现概率下的构架载荷极值区间, 利用雨流计数法编制了构架载荷的二维载荷谱并基于Goodman方程将二维载荷谱等效转换为一维载荷谱, 基于一维载荷谱分析了各载荷系载荷的累积频次分布规律。研究结果表明: 对于本文研究对象而言, 当截断数目为1时, 载荷识别结果的相对误差最小; 载荷极小值与载荷极大值的概率密度分布整体相对于坐标系的纵坐标轴对称, 涵盖载荷范围越大的载荷系, 其概率密度的极值越低; 齿轮箱载荷系极大值与极小值涵盖的载荷范围最大, 最大载荷达到25 kN, 制动载荷系、侧滚载荷系与横向载荷系次之, 最大载荷达到了15 kN, 浮沉载荷系的最大载荷约为5 kN, 扭转载荷系极值涵盖的范围最小, 最大极值约为3 kN; 随着出现概率的增大, 各载荷系极值区间也逐渐变大; 各载荷系的二维载荷谱均有明显的载荷频次极值, 各载荷系的载荷频次极值均出现在低幅值区域; 对于二维载荷谱等效后的一维载荷谱累积频次分布, 各载荷系总累积频次相当, 齿轮箱载荷系的最大载荷幅值明显大于其他载荷系, 其他载荷系的最大载荷幅值由大到小依次为侧滚载荷系、制动载荷系、浮沉载荷系、横向载荷系和扭转载荷系。 相似文献
4.
基于谱载荷的高速列车转向架的疲劳强度 总被引:3,自引:0,他引:3
为了有效地预测高速列车转向架构架的疲劳强度或寿命,提出了一种基于试验谱载荷的疲劳强度预测方法.这种方法是用雨流计数法对UIC515-4和UIC615-4规定的构架疲劳强度试验载荷和载荷循环次数进行分级,用有限元法确定构架在每级载荷作用下的应力分布,将多轴应力转化为单轴应力,根据Palmgren-Miner线性累积损伤准则计算构架的等效应力,利用S-N疲劳曲线预测构架的疲劳强度或寿命.算例表明,采用该预测方法计算的高速列车转向架构架的疲劳强度与现有文献的结果一致. 相似文献
5.
以某型号高速列车为基础,针对3种不同设计形式的外风挡结构,包括有缝隙外风挡、无缝隙外风挡和底部拆除外风挡,对列车明线运行时外风挡周围流场分布和外风挡所受的气动载荷的仿真分析研究.计算结果表明:外风挡附近的压力急剧变化,随列车运行速度增加,外风挡受到气动载荷增加.对于有缝外风挡和底部拆除外风挡方案,外风挡受到拉伸拱形胶囊向胶囊外部的拉力,而对于无缝隙外风挡,外风挡受到挤压拱形胶囊向胶囊内部的压力.无缝隙外风挡与有缝隙外风挡方案相比,外风挡受到压差减小;底部拆除外风挡方案与有缝隙外风挡相比,使外风挡胶囊受到压差也明显减小.通过空气动力学线路试验证实仿真分析计算得到外风挡压差与试验结果相差不大,因此仿真分析结果可以用来指导外风挡设计. 相似文献
6.
基于SIMPACK的磁悬浮车辆耦合动力学性能仿真模型 总被引:4,自引:2,他引:4
为了有效评价磁悬浮车辆动力学性能,引入SIMPACK仿真软件,根据磁悬浮车辆多体系统动力学拓扑关系图,建立了磁悬浮车辆-轨道-控制系统的耦合动力学模型,分析了试验结果和仿真结果。在模型中,磁悬浮车辆被视为多刚体,并具有两系悬挂系统,轨道被视为弹性欧拉梁,并考虑了磁悬浮车辆的控制系统性能。数值分析结果表明:梁的最大变形的计算值为1.5mm,试验值为1.6mm,车体的垂向加速度仿真结果与试验结果基本一致,利用仿真模型能较准确地预测耦合系统的动力学性能。 相似文献
7.
提出了一种高速列车动模型试验装置的新型加速方法,以期获得均匀的动模型车加速度,避免其他加速方法存在的问题;介绍了该加速方法独特的组成结构和试验原理,并进行了相应的动力学分析、数值模拟和试验验证.分析表明:该新型加速方法结构简单、可控性强、动模型车试验段出口速度高、能有效保护车载测试设备,获得了预期的加速效果,可适用于高速列车动模型试验装置模拟列车进出隧道、列车交会、列车与周围环境之间相对运动等一系列的空气动力学试验. 相似文献
8.
提出了一种高速列车动模型试验装置的新型加速方法,以期获得均匀的动模型车加速度,避免其他加速方法存在的问题;介绍了该加速方法独特的组成结构和试验原理,并进行了相应的动力学分析、数值模拟和试验验证.分析表明:该新型加速方法结构简单、可控性强、动模型车试验段出口速度高、能有效保护车载测试设备,获得了预期的加速效果,可适用于高速列车动模型试验装置模拟列车进出隧道、列车交会、列车与周围环境之间相对运动等一系列的空气动力学试验. 相似文献
9.
为了解决高速列车轴承早期故障中低频信号的类间分离性较弱、保持架故障难以识别等的问题,提出了基于Teager能量算子(Teager energy operator,TEO)聚合经验模态分解(ensemble empirical mode decomposition,EEMD)熵的自适应诊断方法.该方法将EEMD、样本熵、TEO相结合,利用EEMD的自适应性得到固有模态(intrinic mode function,IMF)信号,用改进的TEO从IMF中提取得到样本熵,使用支持向量机(support vector machine,SVM)判断轴承工作状态与故障类型;讨论了EEMD能量熵、EEMD奇异值熵、EEMD-TEO时频熵生成的故障特征向量以及该向量在SVM中识别结果;对正常轴承、保持架故障、滚动体故障3种状态的轴承样本数据进行了故障诊断.研究结果表明:对3种轴承的故障识别率可以达到98%,较传统的经验模态熵识别率提高了2.6%,该方法可用作高速列车轴承状态诊断. 相似文献
10.
研究了轴箱横向载荷高精度测试方法,将经过标定的轴箱安装于运用车辆,获得了载荷-时间历程,结合车辆运行状态分析了在高速线路典型服役条件下的载荷特性,编制了对应于进出站工况、低速运行、高速运行的恒幅载荷谱。研究结果表明:轴箱横向载荷影响因素主要为列车运行速度、曲线半径、道岔、轨道不平顺;运行中普遍存在着相对固定且与车辆运行速度无关的2 Hz的低载荷主频;对于大于5 Hz的频率,载荷主频与列车的运行速度直接相关,曲线通过时内轨侧轴箱载荷变化幅值稍大于外轨侧,且载荷均值以及最大载荷幅值均随列车运行速度的增大而增大;曲线半径增大的同时横向载荷均值逐渐接近于0,最大载荷幅值也逐渐减小;进出站道岔会造成横向载荷出现约10 s的一次波动,同时包含短时间冲击载荷;横向轨道不平顺会造成轴箱横向载荷在通过相应区间时出现多个大幅波动,随着运行速度的增加,波动周期缩短,峰值减小;进出隧道对横向载荷影响不明显;对于不同运行工况下的载荷谱,进出站工况载荷幅值最大,作用频次占很少部分;低速运行载荷幅值次之,作用频次占比约为1/3,高速运行载荷幅值最小,作用频次占比达到60%以上。 相似文献
11.
通过线路测试研究了列车运行速度、线路条件与车轮镟修对齿轮箱箱体动应力的影响规律, 结合轴箱振动加速度分析了箱体动应力的变化规律。研究结果表明: 齿轮箱箱体动应力与轴箱垂向加速度的幅值谱基本一致, 主频均为570 Hz, 反映了箱体动应力水平与轮轨相互作用产生的高频激励密切相关; 列车运行速度由200 km·h-1增大到300 km·h-1时, 齿轮箱箱体的应力幅值呈现增大趋势, 尤其在箱体开裂的齿面检查孔位置, 其等效应力由5.56 MPa增大至16.67 MPa, 增大约2倍; 轨道磨耗造成的不平顺对列车轴箱和齿轮箱箱体的振动具有较大的影响, 列车由磨耗线路运营至打磨线路时, 轴箱高频阶段振动幅值水平明显降低, 箱体关键点的等效应力由16.26 MPa减小到10.16 MPa, 减小38%;车轮高阶多边形在列车高速运行时(300 km·h-1) 产生的高频(550~650 Hz) 激扰造成箱体高频振动和动应力、等效应力大幅提升, 箱体关键点的等效应力在镟轮前后由17.45 MPa减小到8.56 MPa, 减小51%。可见, 轨道打磨与车轮镟修均改善了齿轮箱箱体的受力状态, 因此, 选择合理的轨道打磨和轮对镟修周期可有效延长齿轮箱箱体的疲劳寿命。 相似文献
12.
路面不平整引起的车辆动载计算方法 总被引:3,自引:0,他引:3
为了分析不平整路面上行驶车辆的动载特性, 研究了西宝高速公路平整度实测结果, 用正弦曲线模拟路面表面, 建立了考虑汽车侧倾因素和轮胎阻尼的四自由度车辆振动模型, 利用模态理论和编程计算对车辆振动模型在不同路面波长、不同振幅、不同行车速度及左右车轮激励不同时的动载进行了分析和求解, 给出了车辆在不平整路面上行驶时产生的动载计算方法。计算结果表明: 波形路面上产生的动荷载沿路线纵向呈波形分布, 在路面上行驶的车辆对路面可能产生很大的动荷载, 最大动荷载系数可达到2.0以上。 相似文献
13.
动测法评定钢筋砼拱桥承载力初探 总被引:1,自引:0,他引:1
通过模型测试手段 ,进行模型破坏性试验 .实测模型在各级荷载作用下的一、二阶固有频率 ,反推出拱桥的抗拉 (压 )刚度和抗弯刚度 .用反推刚度作为计算刚度检算拱桥内力、变形 ,并与设计理论结果、静力测试结果进行比较 .结果表明 ,动测法检算拱桥承载力快速、省时、省力 . 相似文献
14.
基于车辆系统动力学理论建立包括柔性齿轮箱体与柔性轮对在内的刚柔耦合动力学模型,应用直接转矩控制理论建立了牵引电机控制模型,利用Simpack与Simulink联合仿真平台建立了机电耦合模型; 考虑轮轨激励、车辆结构振动与谐波转矩等因素耦合作用,通过机电联合仿真对牵引传动部件振动特性进行了频谱分析,对牵引电机悬挂节点径向刚度、轴向刚度及阻尼在不同量级区间内的取值进行了研究。分析结果表明:在牵引电机谐波转矩和车轮多边形作用下,高速列车牵引传动部件出现较为明显的高频振动,牵引电机悬挂节点径向刚度为20~30 MN·m-1时,牵引电机垂向振动达到极小值,齿轮箱体与牵引电机在6倍基波频率及车轮转频处振动加速度较小,且径向刚度较小时车辆安全性指标较优;牵引电机悬挂节点轴向刚度为4~6 MN·m-1时,齿轮箱体与牵引电机受电机谐波转矩及车轮多边形高频激励的影响较小;牵引电机悬挂节点阻尼为0.1~40.0 kN·s·m-1时,转向架部件振动有效值较小,阻尼的变化对车辆动力学指标的影响甚微,且车辆安全性及平稳性指标较优。 相似文献
15.
进行了高速列车车体6005A-T6、6082A-T6铝合金的静态拉伸和动态压缩试验,识别了0.001~2 500 s-1应变率范围内2种铝合金的材料应变率效应,建立了对应的Johnson-Cook本构模型;构建了高速列车典型车辆的显式动力分析模型,完成了刚性墙冲击车体过程仿真,研究了车钩稳态载荷、冲击速度、加载方式对车体承载极限的影响;分析了高速列车一号车和二号车车体在冲击载荷下的变形演化,通过应力变化临界点确定了车体的承载极限,并对列车在更高能量配置模式下的车体承载性能进行了验证。研究结果表明:在0.001~2 500 s-1应变率范围内,6005A-T6和6082A-T6铝合金应变率敏感系数分别为2.9×10-3和8.5×10-3,应变率效应不明显;纵向动态冲击载荷下,应变率强化对铝合金车体结构承载力影响不明显,惯性效应是其承载能力高于静态极限的主要原因;纵向冲击载荷从车钩位置传递时,一号车和二号车车体的动态承载力水平显著高于车体许用静态压缩载荷;冲击载荷下的车体结构承载力可为高速列车碰撞各界面能量分布问题中吸能元件平台力取值提供上界;可适当考虑提高车体许用压缩载荷以扩大列车端部吸能部件力学参数设计域,以满足更苛刻需求下的列车被动安全性能。 相似文献
16.
为评估某中低速磁浮列车悬浮架构架是否满足强度要求,利用自主研发的全尺寸中低速磁浮强度试验台对该悬浮架构架开展了静强度与疲劳强度试验,基于有限元和多体动力学仿真结果,确定了悬浮架构架的应力集中部位与承载特性;据此,在悬浮架构架上合理布置了系列测点,测量了车辆在超常载荷、模拟主要运营载荷和模拟特殊运营载荷3类工况下悬浮架构架的应变响应信号,根据悬浮架构架不同部位的材料特性,通过转换计算评估了悬浮架构架的应力水平。研究结果表明:在静强度试验中,悬浮架构架的较大应力点主要分布于托臂拐角、支撑轮安装座与防侧滚梁连接处、停放制动滑橇安装座等处,而在疲劳强度试验中的薄弱点主要为纵梁与托臂连接的焊缝处;相比于列车的常规运行工况,在悬浮失效、超载落车制动等特殊运行条件下,悬浮架构架的静强度和疲劳强度的应力幅值分别增加了1.06和4.77倍;所有测试工况下悬浮架构架受到的最大拉应力、最大压应力分别为67.22、-20.30 MPa,且最小安全系数为1.71,说明悬浮架构架满足结构强度要求;所有测试数据结果均在各自材料的Goodman-Smith疲劳极限图包络线内,说明悬浮架构架满足疲劳强度要求;经渗透探伤查验,悬浮架构架的任何位置上均未发现裂纹,验证了悬浮架构架疲劳强度评估结果的可靠性。 相似文献
17.
复兴号CR400BF高速动车组动力转向架的牵引电机采用特有的四点弹性架悬方式, 在电机和构架之间安装有横向液压减振器和横向止挡, 首次采用牵引电机作为动力吸振器来控制转向架蛇行运动稳定性和蛇行频率, 从而避免引起车体弹性模态共振; 考虑悬挂参数和轮轨接触非线性, 建立了复兴号动车组非线性多刚体动力学仿真模型, 通过悬挂模态计算和动力学时域仿真, 分析了关键参数对动车蛇行运动的影响规律; 基于将电机作为动力吸振器的原理, 优化了电机节点横向刚度和横向减振器阻尼; 考虑动车组运营中的轮轨匹配随机因素, 组合400种轮轨随机匹配状态, 仿真分析了动车的动力学性能; 开展动车组长期线路动力学跟踪试验, 研究了动力转向架蛇行运动演变规律。仿真与试验结果表明: 牵引电机弹性架悬下的构架横向加速度频谱图从以蛇行频率为主频的单峰值变化为主频在蛇行频率两侧的双峰值, 说明电机起到了动力吸振器的作用; 将电机作为动力吸振器能够提高动车蛇行运动稳定性, 具有不同等效锥度的典型轮轨匹配下非线性临界速度超过500 km·h-1; 动车蛇行运动最高频率被控制在6 Hz附近, 远离车体中部菱形弹性模态频率8.5 Hz, 避免了转向架蛇行运动激起车体弹性共振; 动车组在轨道随机不平顺激扰下, 构架端部横向加速度小于0.5g, 平稳性指标小于2.5, 轮轴横向力和脱轨系数等运行安全性指标满足要求。 相似文献