首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了在不同工况中,同时兼顾轨迹跟踪算法的跟踪精度,计算速度与车辆稳定性,提出基于不同车速和路面附着系数的参数自适应MPC算法。在线性时变MPC的基础上增加车辆稳定性控制,并基于路面附着系数设计2种控制策略:在高附着系数路面,针对不同车速优化预测时域与控制时域;在低附着系数路面,开启车辆稳定性控制并基于改进粒子群算法优化权重参数。2种策略在保证跟踪精度与车辆稳定性的基础上提高计算速度。设计基于前馈神经网络的路面识别算法从而为多参数自适应轨迹跟踪算法识别所在道路的路面附着系数,利用CarSim-Simulink平台进行联合仿真。研究结果表明:路面识别算法的平均绝对百分比误差为12.77%,足够满足多参数自适应轨迹跟踪算法的需求;相较于传统线性时变MPC跟踪算法,低速工况下参数自适应轨迹跟踪算法在高附着系数和低附着系数的路面上,横向平均绝对误差分别降低了20.7%和24.6%;高速工况下横向平均绝对误差分别降低了66.2%和50.7%;综合所有试验,算法的计算时间减少了40.2%;在保障车辆稳定性的同时降低算法的计算时间。研究成果针对不同车速与附着系数对轨迹跟踪算法参数进行优化,利用自适应预...  相似文献   

2.
在ADAS的控制算法中,普遍的控制算法只能在本车道跟车,据此提出一种新方法,不仅能使车辆在本车道内跟车,还能在本车道无车的情况下,进行跨车道跟车。首先在考虑前后车辆制动距离的情况下,对车距算法进行了优化,并把其他车道的车辆通过算法投影至本车道;其次搭建了基于模型预测控制(MPC)算法的车辆离散化模型系统,对其控制参数施加约束;最后通过设置前车不同的车速和车况,在CarSim搭建车辆模型并与Matlab/Simulink联合仿真,针对车辆的纵向加速度变化的研究。  相似文献   

3.
制动系统相关故障和行车间距不足是导致载货汽车追尾和侧翻事故的主要原因,通过制动危险状态及其影响因素的分析,搭建车辆在途状态检测装置,获取载货汽车载荷、车速、制动系统状态数据;基于传感器数据进行了制动蹄片磨损程度异常、制动蹄片温度异常状态和制动灯故障等单参数制动危险状态辨识;通过对制动过程中车辆进行动力学分析,建立了多参数制动距离计算模型,为标定模型参数,设计并完成了车辆滑行试验;通过仿真及实车试验,对载货汽车制动距离模型的有效性进行了验证。基于多参数制动距离模型,提出了一种检测载货汽车制动过程中的危险状态的方法。  相似文献   

4.
路面不平度对道路车辆行驶安全性及车辆动力学响应具有重要影响。通过将路面不平度识别与先进悬架控制结合,有望能进一步提升乘员舒适性和车辆的操纵稳定性。现有基于数据驱动的路面分类方法难以高效处理时变参数与车速,现有基于模型的路面识别算法需要已知精确车辆模型,在实际应用中面临车辆物理参数难以获得的问题。提出一种融合模型和数据驱动的路面分类算法,采用基于模型的方法反算等效路面轮廓,结合数据预处理方法,对车辆响应和反算等效路面轮廓数据进行滤波;对等效路面轮廓和响应信息进行时域频域特征计算,采用ReliefF算法进行关键特征提取,构建基于径向基函数神经网络的路面分类器,进行路面分级识别;通过仿真试验和实车试验验证了不同车辆参数和车速下所提出的算法鲁棒性。  相似文献   

5.
针对模型预测控制(MPC)路径跟踪控制器在不同路面附着系数及车速下跟踪误差大的问题,提出了基于粒子群寻优(PSO)-反向传播(BP)神经网络优化MPC的无人驾驶汽车路径跟踪控制策略。首先,设计了MPC路径跟踪控制器;其次,利用PSO-BP对MPC进行优化,以控制器精度和车辆稳定性作为评价函数,获得PSO离线最优时域参数;最后,选择4种工况进行双移线跟踪对比仿真验证。结果表明:所提出的控制策略在保证行驶稳定性的条件下,低路面附着系数低速、高路面附着系数低速、高路面附着系数高速及中路面附着系数中速工况下双移线跟踪横向控制精度分别提高了50%、55%、9%和20%。  相似文献   

6.
为了评估既有跟驰模型在仿真中国驾驶人跟驰行为方面的表现,对5种代表性跟驰模型进行参数标定与效果验证。基于"上海自然驾驶研究项目"采集的60位驾驶人、累计超过16万km的实际驾驶行为数据,根据雷达、车辆总线数据自动提取2 100个城市快速路稳定跟驰行为片段;采取5-折交叉验证法划分标定与验证数据集,即将每位驾驶人的50个跟车片段随机划分成5个不相交的子集(每个子集包含10个跟车片段),其中4个子集作为标定数据集,剩下的1个作为验证数据集,依次轮换标定数据集与验证数据集5次,展开5次模型标定与验证。基于标定数据集,采用遗传算法对Gazis-Herman-Rothery、Gipps、智能驾驶人、全速度差(FVD)以及Wiedemann模型进行参数标定;基于验证数据集,评估5种模型在预测两车间距方面的精度。结果表明:FVD模型在5种模型中表现最佳,具有最小的误差(21%)和误差标准差;相对于微观交通仿真软件VISSIM中所采用的Wiedeman模型,FVD模型具有精度高、易于标定、对不同驾驶人鲁棒性强3个优势,更加适应于仿真中国驾驶人的跟驰行为。研究结果对于开发适合于中国驾驶人与道路交通环境特征的跟驰模型及微观交通仿真系统具有重要价值。  相似文献   

7.
针对智能车辆在轨迹跟踪过程中的横向控制问题,提出一种基于强化学习中深度确定性策略梯度算法(Deep Deterministic Policy Gradient,DDPG)的智能车辆轨迹跟踪控制方法。首先,将智能车辆的跟踪控制描述为一个基于马尔可夫决策过程(MDP)的强化学习过程,强化学习的主体是由Actor神经网络和Critic神经网络构成的Actor-Critic框架;强化学习的环境包括车辆模型、跟踪模型、道路模型和回报函数。其次,所提出方法的学习主体以DDPG方法更新,其中采用回忆缓冲区解决样本相关性的问题,复制结构相同的神经网络解决更新发散问题。最后,将所提出的方法在不同场景中进行训练验证,并与深度Q学习方法(Deep Q-Learning,DQN)和模型预测控制(Model Predictive Control,MPC)方法进行比较。研究结果表明:基于DDPG的强化学习方法所用学习时间短,轨迹跟踪控制过程中横向偏差和角偏差小,且能满足不同车速下的跟踪要求;采用DDPG和DQN强化学习方法在不同场景下均能达到训练片段的最大累计回报;在2种仿真场景中,基于DDPG的学习总时长分别为DQN的9.53%和44.19%,单个片段的学习时长仅为DQN的20.28%和22.09%;以DDPG、DQN和MPC控制方法进行控制时,在场景1中,基于DDPG方法的最大横向偏差分别为DQN和MPC的87.5%和50%,仿真时间分别为DQN和MPC的12.88%和53.45%;在场景2中,基于DDPG方法的最大横向偏差分别为DQN和MPC的75%和21.34%,仿真时间分别为DQN和MPC的20.64%和58.60%。  相似文献   

8.
李硕 《中南公路工程》2005,30(1):158-160,164
提出的自动判定和实时跟踪高速公路常发性拥挤路段的方法包含3个算法:①路段平均车速算法;②交通流区段类型判定算法;③排队类型判定算法。考虑采用两个前后相邻车辆检测站之间的路段平均车速来实时判定和跟踪常发性交通拥挤路段的情况,使得模型所提供的信息更能反映路段的真实交通状况。采用路段平均车速的方法克服了目前采用点速度来跟踪车队方法的局限性,并且采用“客观”标定临界车速作为基于现场数据判定车队状态的一种方法。  相似文献   

9.
复杂山地线形和道路冰雪路面结合条件下的安全车速设置及通行能力保障是交通管理面临的新挑战。针对北京冬奥会延庆赛区复杂山地道路冰雪路面场景,建立了安全车速与道路线形设计及路面附着系数之间的关系,以安全车速为依据得到了不同路面条件下山地道路的通行能力。依据道路平曲线、竖曲线和横断面数据建立了山地道路三维空间模型;分析了车辆在山地道路平纵组合路段的受力情况,构建了车辆安全行驶速度与圆曲线半径、道路超高、纵坡坡度和路面附着系数的关系模型,并分析了基于安全车速模型的道路通行能力。为了验证模型,选取2种常见的冰雪路面状况和2种常用的车辆类型,获得不同条件下山地道路冰雪路面的安全车速。采用VISSIM软件设计了20种仿真场景,结合道路实测数据验证了安全车速模型的对山地道路冰雪路面车辆安全行驶的提升作用。实测与结果表明:相比全程单一限速模型,所建立的安全车速模型在冰膜路面的行程时间缩短了约38%(小汽车)和32%(大客车),雪板路面的行程时间缩短了约26%(小汽车)和24%(大客车)。山地道路交通流量存在1个自由流到饱和流的相变过程,冰膜路面小汽车下行最大交通量为241辆/h(单向行驶)和231辆/h(双向行驶),大客车下行最大交通量为227辆/h(单向行驶)和222辆/h(双向行驶);雪板路面小汽车下行最大交通量为319辆/h(单向行驶)和249辆/h(双向行驶),大客车下行最大交通量为301辆/h(单向行驶)和236辆/h(双向行驶)。   相似文献   

10.
为了提升车辆的安全性和能量利用率,从路径规划的层面出发,针对避免车辆遇到极端工况及低效率工况的问题,提出将车辆稳定性判据模型和交通流模型相结合的方法来规划车辆路径,使得车辆在路面湿滑情况下实现快速、安全的行驶。使用交通流模型预测车辆未来将要面临的交通环境变化,再使用稳定性判据模型评估未来交通的安全性,以便为混合动力车辆规划出最快且最安全的路径。具体来讲,为了预测混合动力车辆未来将要面临的车速及车流密度的变化,使用通量矢量分裂格式求解广义Aw-Rascle-Zhang(GARZ)宏观交通流模型。此外,使用驾驶人在环仿真平台PreScan,收集了同一驾驶人在不同车速及不同相对前车距离时给出的前轮转向角响应。基于前轮驱动(FWD)前轮转向(FWS)车辆和全轮转向(AWS)分布式驱动车辆(DDV)的Simulink模型,给出了不同前轮转向角对应的轮胎力饱和因子(δTFSC)响应。使用人工神经网络训练不同车速和车流密度对应的δTFSC,建立了车辆的稳定性判据模型。使用新建立的稳定性判据模型对交通流模型预测的参数(车流速及车流密度)进行稳定性评估。然后,基于以上的方法优化了车辆行驶路径,以确保车辆在湿滑路面上的行驶安全。最后,使用US-101真实交通流数据来验证交通流模型的预测结果。经实例验证得出:交通流模型与车辆横向稳定性判据模型相结合可以从路径规划的层面保证车辆安全行驶并提升交通系统的通行效率。  相似文献   

11.
针对现有端到端自动驾驶模型输入数据类型单一导致预测精确度低的问题,选取RGB图像、深度图像和车辆历史连续运动状态序列作为多模态输入,并利用语义信息构建一种基于时空卷积的多模态多任务(Multimodal Multitask of Spatial-temporal Convolution,MM-STConv)端到端自动驾驶行为决策模型,得到速度和转向多任务预测参量。首先,通过不同复杂度的卷积神经网络提取场景空间位置特征,构建空间特征提取子网络,准确解析场景目标空间特征及语义信息;其次,通过长短期记忆网络(LSTM)编码-解码结构捕捉场景时间上、下文特征,构建时间特征提取子网络,理解并记忆场景时间序列信息;最后,采用硬参数共享方式构建多任务预测子网络,输出速度和转向角的预测值,实现对车辆的行为预测。基于AirSim自动驾驶仿真平台采集虚拟场景数据,以98 200帧虚拟图像及对应的车辆速度和转向角标签作为训练集,历经10 000次训练周期、6 h训练时长后,利用真实驾驶场景数据集BDD100K进行模型的测试与验证工作。研究结果表明:MM-STConv模型的训练误差为0.130 5,预测精确度达到83.6%,在多种真实驾驶场景中预测效果较好;与现有其他主流模型相比,该模型综合场景空间信息与时间序列信息,在预测车辆速度和转向角方面具有明显的优势,可提升模型的预测精度、稳定性和泛化能力。  相似文献   

12.
本文旨在实现智能车辆在换道过程中经济车速规划。基于瞬态燃油消耗模型、车辆动力学模型和换道过程中道路曲率信息,利用动态规划算法求得车辆在换道过程中的经济车速轨迹。Matlab/Simulink与Car Sim联合仿真结果表明,与定速巡航算法相比,动态规划算法可节油8%左右。采用所提出的方法可在保证智能车辆安全行驶的基础上,提升其燃油经济性能,为智能车辆换道的速度控制提供决策依据。  相似文献   

13.
为有效刻画未来智能网联环境下交通流微观跟驰行为,以更加精确地进行车辆的运动决策,建立了基于安全势场理论下的车辆跟驰模型。模型以势场理论为基础,首先阐述了交通环境中安全势场的客观性、普遍性以及可测性,然后通过引入加速度参数对既有安全势场模型进行改进,改进后的安全势场模型能够有效刻画出在不同速度、加速度值下车辆安全势场的变化趋势。在分析安全势场变化基础上,构建的车辆跟驰模型强化了加速度参数对车辆跟驰行为的影响,由于不同速度、加速度信息在智能网联环境下车辆可以实时获取,因此该模型可应用于未来智能网联环境中。此外,在模型参数标定过程中,通过对NGSIM数据进行筛选,得到含有较多减速停车以及启动加速状态的轨迹数据,共筛选得到412组NGSIM真实跟驰车对数据,并最终利用人工蜂群算法对该模型进行参数标定。为评估模型仿真效果,选择OVM模型、IDM模型与本文模型进行比较,并选取均方根误差RMSE和平均绝对百分误差MAPE为参数标定结果评价与验证的指标,结果表明,建立的基于安全势场理论的车辆跟驰模型具有良好的精度,适用于描述考虑加速度参数条件下的跟驰行为,可为今后智能网联环境下车辆微观驾驶安全决策、交通流中观安全势场分布、交通流宏观状态估计等奠定理论基础。  相似文献   

14.
现有的无人机(UAV)交通状态感知方法,主要针对宏观交通状态参数的获取,同时尚未克服UAV自运动对交通参数检测精度的影响,难以满足智能交通系统对于高精度微观交通参数的应用需求。为此,提出一种基于地空信息融合的UAV交通状态感知方法,该方法包括:地空信息融合模型、道路关键点(IKP)检测及跟踪、车辆目标检测及追踪算法和交通状态参数提取及估计。其中,地空信息融合模型利用地基信息(IKP世界坐标)与空基信息(IKP像素坐标)进行最优化融合,并通过自适应IKP追踪算法与自适应UAV位置偏移判断算法实时更新模型参数,以此克服UAV自运动对车辆轨迹精度的影响,进而获取可靠的车辆级(瞬时速度、车头间距和车头时距)与车道级(车道动态密度、车道流量和空间平均车速)交通状态参数。利用提出的感知方法获取实地拍摄视频的车辆级交通参数并进行了分布检验,同时比较了基于不同交通流模型的车道级参数估算方法。结果表明:该方法在车辆检测的mAP@0.5指数超过90%,同时提取的车辆轨迹相对完整,获取的车辆级和车道级交通状态参数也符合实际交通流状况。最后,将该模型应用于实地道路的交通拥堵检测及交通事件检测,该研究结果为UAV在现代交通感知和管理中的应用提供了一种理论和技术参考。  相似文献   

15.
为了能有效准确地根据事故现场情况预测出碰撞前车辆的运行车速情况,文章利用反推算法,遵循相关物理定律,构建正面碰撞事故中车辆相关参数及道路条件与车速的函数关系,并基于Visual Basic平台搭建车速预测模型并进行实测验证。结果表明,所构建模型的误差率较低,所构建模型、系统是正确高效的,可用于正面碰撞事故的车速预测研究工作。  相似文献   

16.
提出了一种融合预瞄特性的智能电动汽车稳定性前馈+反馈控制方法。建立车辆预瞄模型,通过汽车在环境感知时的前视行为,引入道路曲率作为车辆动力学特性的影响因素。基于在前视信息指导下的车辆位姿变化,根据道路附着能力和车速指数模型描述期望纵向车速,建立轮胎侧偏刚度补偿的稳定性前馈控制方法。同时,采用模型预测控制(MPC)设计稳定性反馈控制律,根据车辆的预瞄信息自适应调整预测模型参数和预测时间,消除前馈控制误差及路面扰动等不确定性因素带来的影响。研究结果表明,本文提出的控制策略下汽车质心侧偏角、横摆角速度和侧向加速度小,且跟踪精度更高。仿真试验中,相比于无控制、MPC反馈控制与前馈+定参数MPC反馈控制,本文提出的控制策略在双移线工况1下质心侧偏角峰值分别减小了41.3%、28.9%和10.0%,横摆角速度峰值分别减小了18.0%、6.7%和2.0%,双移线工况2下质心侧偏角峰值分别减小了27.2%、8.7%和8.0%,横摆角速度峰值分别减小了16.9%、12.9%和8.6%;相比于MPC反馈控制与前馈+定参数MPC反馈控制,在蛇行工况1下,质心侧偏角峰值分别减小了49.8%与34.8%,横摆角速...  相似文献   

17.
针对重型车实际使用过程中载重估算精度低、成本高等问题,提出基于递归最小二乘法(RLS)和贝叶斯优化(BO)算法的内燃机重型车辆载重估算方法。该方法提出了基于数据滤波的车辆加速度和道路坡度计算方法,使用控制器局域网络(CAN)总线和全球定位系统(GPS)高程数据,基于车辆纵向动力学和RLS进行重型车载重估算。采用BO算法对12组训练数据建模,对车辆载重估算模型中的多变量滤波参数进行寻优配置,并利用测试数据进行模型估算性能评价。结果表明,该方法具有良好的载重估算精度,估算误差在6%以内。  相似文献   

18.
开展车辆制动时路面类型识别的研究,提出一种基于主成分分析-学习向量量化神经网络 (Principal Component Analysis - Learning Vector Quantization,PCA-LVQ) 的制动工况路面识别方法。利用主成分分析对多维度驾驶数据降维处理,提取能表征路面特征的主要成分,采用学习向量量化神经网络对降维处理后的驾驶数据进行训练,并用于路面特征分类,使用制动工况下实车试验数据和硬件在环仿真数据进行验证。结果表明,所提出的 PCA-LVQ算法能准确识别路面类型特征,路面识别的精度达到 97%,与传统 BP神经网络的路面类型特征识别精度提升 7%;同时,在不同车速下,基于PCA-LVQ算法也能较准确地识别路面类型特征。  相似文献   

19.
李松  刘力军  贺国光 《公路交通科技》2007,24(12):104-108,116
为分析交通流混沌转化机理,利用Matlab软件编制皮埃莱(Bierley)模型来产生仿真交通流时间序列。在一定参数组合情况下,仿真研究了交通流车队中前后车辆的车头间距变化过程。通过分析这种车头间距的变化曲线,可以明显地观察到交通流混沌运动和有序运动之间的转化过程;在此基础上,通过考虑模型参数和仿真参数变化的大量仿真试验,应用最大Lyapunov指数改进算法对仿真交通流混沌转化的影响因素进行了理论分析。该研究结果有助于进一步理解、解释诸多交通流混沌转化现象,并为短时交通流预测和智能交通控制提供理论依据。  相似文献   

20.
林程  汪博文  吕沛原  宫新乐  于潇 《汽车工程》2023,(7):1099-1111+1122
当多辆自动驾驶车辆在结构化道路上执行换道合流任务时,需要综合考虑转向和合流动作以避免事故的发生,同时曲率和周车车速的变化也增大了协同控制的难度。本文聚焦上述问题,提出了面向变曲率道路的多车换道博弈运动规划与协同控制方法。首先,建立曲率坐标系下的多车模型来解析车间安全距离及动力学状态。其次,通过系统地考虑道路曲率变化及周围车辆信息,提出基于博弈的多车换道运动规划算法,采用分布式框架快速求解兼顾个性化驾驶的最优速度轨迹及换道时机。最后,基于B样条曲线高效识别道路曲率及规划轨迹,构建了自适应时变预测控制算法实现轨迹跟踪,其特点在于单步参数矩阵实时更新,消除车速和曲率频繁变化带来的控制偏差累积。实验结果表明,相比斯坦利(Stanley)方法,能降低58%的跟踪误差;相较协同自适应巡航方法,能减少74%的合流时间;另外计算求解效率也仅为集中式模型预测控制方法的10%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号