首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reviews the results of a series of experiments aimed at investigating the day-to-day dynamics of commuter behavior in congested traffic systems. The interactive experiments involve actual work commuters in a simulated traffic system, whereby commuters noncooperatively supply their decisions to a traffic simulation model that determines the resulting arrival times and associated trip times; these in turn form the basis of the commuters' decisions on the next day. Models are developed to predict the daily switching of departure time and/or route by individual commuters in response to experienced congestion in the system or to exogenously supplied information. These models are incorporated in a dynamic modelling framework for the analysis of the impacts of planned traffic disruptions, such as those associated with major highway repair and reconstruction activities.  相似文献   

2.
This paper describes simulation studies that were conducted to assess the performance of a freeway corridor control system. The system combines an advanced traffic management system with a motorist information system that provides route guidance to individual drivers. It has a hierarchical structure: The corridor level control acts in a supervisory capacity dynamically allocating traffic among alternative corridor facilities, including freeways, frontage roads, and signalized arterials. The local level control then selects control parameters for the individual facilities based on the predicted usage at the corridor level. A user specified performance function is optimized in the process. Both recurrent and nonrecurrent congestion scenarios were simulated using the SCOT model as a test bed. It is shown that, in most cases, significant benefits in performance can be obtained when the system operates as designed.  相似文献   

3.
This paper investigates the reliability of information on prevailing trip times on the links of a network as a basis for route choice decisions by individual drivers. It considers a type of information strategy in which no attempt is made by some central controller or coordinating entity to predict what the travel times on each link would be by the time it is reached by a driver that is presently at a given location. A specially modified model combining traffic simulation and path assignment capabilities is used to analyze the reliability of the real-time information supplied to the drivers. This is accomplished by comparing the supplied travel times (at the link and path levels) to the actual trip times experienced in the network after the information has been given. In addition, the quality of the decisions made by drivers on the basis of this information (under alternative path switching rules) is evaluated ex-post by comparing the actually experienced travel time (given the decision made) to the time that the driver would have experienced without the real-time information. Results of a series of simulation experiments under recurrent congestion conditions are discussed, illustrating the interactions between information reliability and user response.  相似文献   

4.
There has been rapid growth in interest in real-time transport strategies over the last decade, ranging from automated highway systems and responsive traffic signal control to incident management and driver information systems. The complexity of these strategies, in terms of the spatial and temporal interactions within the transport system, has led to a parallel growth in the application of traffic microsimulation models for the evaluation and design of such measures, as a remedy to the limitations faced by conventional static, macroscopic approaches. However, while this naturally addresses the immediate impacts of the measure, a difficulty that remains is the question of how the secondary impacts, specifically the effect on route and departure time choice of subsequent trips, may be handled in a consistent manner within a microsimulation framework.The paper describes a modelling approach to road network traffic, in which the emphasis is on the integrated microsimulation of individual trip-makers’ decisions and individual vehicle movements across the network. To achieve this it represents directly individual drivers’ choices and experiences as they evolve from day-to-day, combined with a detailed within-day traffic simulation model of the space–time trajectories of individual vehicles according to car-following and lane-changing rules and intersection regulations. It therefore models both day-to-day and within-day variability in both demand and supply conditions, and so, we believe, is particularly suited for the realistic modelling of real-time strategies such as those listed above. The full model specification is given, along with details of its algorithmic implementation. A number of representative numerical applications are presented, including: sensitivity studies of the impact of day-to-day variability; an application to the evaluation of alternative signal control policies; and the evaluation of the introduction of bus-only lanes in a sub-network of Leeds. Our experience demonstrates that this modelling framework is computationally feasible as a method for providing a fully internally consistent, microscopic, dynamic assignment, incorporating both within- and between-day demand and supply dynamics.  相似文献   

5.
The inconsistence between system optimality and user optimality represents one of the key difficulties on network traffic congestion control. The advanced connected vehicle systems, enabling smart vehicles to possess/exchange real-time information and conduct portable computation, provide new opportunities to address this challenge. Motivated by this view, this study proposes a coordinated online in-vehicle routing mechanism with intentional information provision perturbation (CRM-IP), which seeks to shape individual vehicles online routing decisions so that user optimality and system optimality are balanced, by exploiting bounded rationality of the users. The proposed CRM-IP is modeled as a pure strategy atomic routing game, and implemented by a sequentially updating distributed algorithm. The mathematical analysis is conducted to quantify the absolute gain of system optimality corresponding to the loss of user optimality resulting from a given level of the information perturbation in the worst case so that the efficiency of the information perturbation can be evaluated. Furthermore, numerical experiments conducted based on City of Sioux Falls network investigate the average effects of the CRM-IP on system optimality and user optimality under various network traffic conditions, comparing to the CRM developed by Du et al. (in press). The results indicate that the improvement of system optimality and the reduction of individual vehicles’ travel time from the CRM is more significant when the network traffic is under an mild congestion state, such as under the levels of service (LOS’s) C, D, and E, rather than under extremely sparse or congested states, such as under LOS’s A and B, or F. Moreover, higher level of information perturbation benefits system optimality more, but the marginal effect decreases after the perturbation reaching certain level, such as λ=0.1 in this case study. In addition, a portion of vehicles may sacrifice user optimality due to the information perturbation, but the extent of the sacrifice is not significant, even though it increases with the information perturbation level. Hence, a small information perturbation is recommended to achieve an efficient network traffic control through the CRM-IP. Overall, this study proposes the CRM-IP as an efficient routing mechanism, which has a great potential to guide the routing decisions of individual vehicles so that their collective behavior improve network performance in both system optimality and user optimality.  相似文献   

6.
This paper addresses departure time and route switching decisions made by commuters in response to Advanced Traveller Information Systems (ATIS). It is based on the data collected from an experiment using a dynamic interactive travel simulator for laboratory studies of user responses under real-time information. The experiment involves actual commuters who simultaneously interact with each other within a simulated traffic corridor that consists of alternative travel facilities with differing characteristics. These commuters can determine their departure time and route at the origin and their path en-route at various decision nodes along their trip. A multinomial probit model framework is used to capture the serial correlation arising from repeated decisions made by the same respondent. The resulting behavioural model estimates support the notion that commuters' route switching decisions are predicated on the expectation of an improvement in trip time that exceeds a certain threshold (indifference band), which varies systematically with the remaining trip time to the destination, subject to a minimum absolute improvement (about 1 min).  相似文献   

7.
In real traffic networks, travellers’ route choice is affected by traffic control strategies. In this research, we capture the interaction between travellers’ route choice and traffic signal control in a coherent framework. For travellers’ route choice, a VANET (Vehicular Ad hoc NETwork) is considered, where travellers have access to the real-time traffic information through V2V/V2I (Vehicle to Vehicle/Vehicle to Infrastructure) infrastructures and make route choice decisions at each intersection using hyper-path trees. We test our algorithm and control strategy by simulation in OmNet++ (A network communication simulator) and SUMO (Simulation of Urban MObility) under several scenarios. The simulation results show that with the proposed dynamic routing, the overall travel cost significantly decreases. It is also shown that the proposed adaptive signal control reduces the average delay effectively, as well as reduces the fluctuation of the average speed within the whole network.  相似文献   

8.
This paper presents a real-time traffic network state estimation and prediction system with built-in decision support capabilities for traffic network management. The system provides traffic network managers with the capabilities to estimate the current network conditions, predict congestion dynamics, and generate efficient traffic management schemes for recurrent and non-recurrent congestion situations. The system adopts a closed-loop rolling horizon framework in which network state estimation and prediction modules are integrated with a traffic network manager module to generate efficient proactive traffic management schemes. The traffic network manger adopts a meta-heuristic search mechanism to construct the schemes by integrating a wide variety of control strategies. The system is applied in the context of Integrated Corridor Management (ICM), which is envisioned to provide a system approach for managing congested urban corridors. A simulation-based case study is presented for the US-75 corridor in Dallas, Texas. The results show the ability of the system to improve the overall network performance during hypothetical incident scenarios.  相似文献   

9.
While the TRANSYT model for optimization of fixed-time traffic signals in a network of mixed transit and private vehicle traffic is well established, certain interactions between transit and nontransit vehicles are not properly modelled in TRANSYT. As a consequence, the optimal signal timing plan and network performance measures generated by TRANSYT may not be appropriate for the actual network. This paper briefly reviews a modelling procedure, adapted for use in the TRANSYT program, that goes some way toward overcoming TRANSYT's deficiencies in the representation of mixed traffic operation. The procedure is applied to a 6 kilometre corridor of mixed traffic operation in Toronto, Canada, to estimate the potential effects of incorporating streetcar operations in the optimization of fixed-time traffic signals.  相似文献   

10.
Railway traffic is heavily affected by disturbances and/or disruptions, which are often cause of delays and low performance of train services. The impact and the propagation of such delays can be mitigated by relying on automatic tools for rescheduling traffic in real-time. These tools predict future track conflict based on current train information and provide suitable control measures (e.g. reordering, retiming and/or rerouting) by using advanced mathematical models. A growing literature is available on these tools, but their effects on real operations are blurry and not yet well known, due to the very scarce implementation of such systems in practice.In this paper we widen the knowledge on how automatic real-time rescheduling tools can influence train performance when interfaced with railway operations. To this purpose we build up a novel traffic control framework that couples the state-of-the art automatic rescheduling tool ROMA, with the realistic railway traffic simulation environment EGTRAIN, used as a surrogate of the real field. At regular times ROMA is fed with current traffic information measured from the field (i.e. EGTRAIN) in order to predict possible conflicts and compute (sub) optimal control measures that minimize the max consecutive delay on the network. We test the impact of the traffic control framework based on different types of interaction (i.e. open loop, multiple open loop, closed loop) between the rescheduling tool and the simulation environment as well as different combinations of parameter values (such as the rescheduling interval and prediction horizon). The influence of different traffic prediction models (assuming e.g. aggressive versus conservative driving behaviour) is also investigated together with the effects on traffic due to control delays of the dispatcher in implementing the control measures computed by the rescheduling tool.Results obtained for the Dutch railway corridor Utrecht–Den Bosch show that a closed loop interaction outperforms both the multiple open loop and the open loop approaches, especially with large control delays and limited information on train entrance delays and dwell times. A slow rescheduling frequency and a large prediction horizon improve the quality of the control measure. A limited control delay and a conservative prediction of train speed help filtering out uncertain traffic dynamics thereby increasing the effectiveness of the implemented measures.  相似文献   

11.
The problem addressed here involves a controller seeking to enhance traffic network performance via real-time routing information provision to drivers while explicitly accounting for drivers’ likely reactions towards the information. A fuzzy control modeling approach is used to determine the associated behavior-consistent information-based network control strategies. Experiments are performed to compare the effectiveness of the behavior-consistent approach with traditional dynamic traffic assignment based approaches for deployment. The results show the importance of incorporating driver behavior realistically in the determination of the information strategies. Significant differences in terms of system travel time savings and compliance to the information strategies can be obtained when the behavior-consistent approach is compared to the traditional approaches. The behavior-consistent approach can provide more robust performance compared to the standard user or system optimal information strategies. Subject to a meaningful estimation of driver behavior, it can ensure system performance improvement. By contrast, approaches that do not seek to simultaneously achieve the objectives of the drivers and the controller can potentially deteriorate system performance because the controller may over-recommend or under-recommend some routes, or recommend routes that are not considered by the drivers.  相似文献   

12.
A multimodal, multiclass stochastic dynamic traffic assignment model was developed to evaluate pre‐trip and enroute travel information provision strategies. Three different information strategies were examined: user optimum [UO], system optimum [SO] and mixed optimum [MO]. These information provision strategies were analyzed based on the levels of traffic congestion and market penetration rate for the information equipment. Only two modes, bus and car, were used for evaluating and calculating the modal split ratio. Several scenarios were analyzed using day‐to‐day and within day dynamic models. From the results analyzed, it was found that when a traffic manager provides information for drivers using the UO strategy and drivers follow the provided information absolutely, the total travel time may increases over the case with no information. Such worsening occurs when drivers switch their routes and face traffic congestion on the alternative route. This phenomenon is the 'Braess Paradox'.  相似文献   

13.
This Taiwan traffic‐adaptive arterial signal control model borrowed its traffic flow framework mainly from a British traffic‐adaptive control model with a cyclic traffic progression function, i.e. SCOOT (Split Cycle Office Optimisation Technique). The new arterial control model can take into account delays of both major and minor streets and make real‐time signal timing decisions with optimal two‐way signal offsets, so as to create the best arterial signal operation performance. It has been developed to be an online real‐time software for both simulation testing and field validation. Through simulation, it was found that the performance when operating this newly developed real‐time arterial traffic‐adaptive model was significantly better than when using the optimal fixed‐time arterial timing plan. On the aspect of field testing, three signalized intersections located in East District, Tainan City, Taiwan were selected to be the test sites. Fairly good traffic control performance has been demonstrated in that it can effectively reduce travel delays of the control arterial as a whole. Additional discussions about how to combine travel delay and the total number of vehicle stops into a new control performance index have also been included to make the new traffic‐adaptive model more flexible and reasonable to meet the expectations of different driver groups in the arterial system.  相似文献   

14.
This study seeks to online calibrate the parameters of aggregate evacuee behavior models used in a behavior‐consistent information‐based control module for determining information strategies for real‐time evacuation operations. It enables the deployment of an operational framework for mass evacuation that integrates three aspects underlying an evacuation operation: demand (evacuee behavior), supply (network management), and disaster characteristics. To attain behavior‐consistency, the control module factors evacuees' likely responses to the disseminated information in determining information‐based control strategies. Hence, the ability of the behavior models to predict evacuees' likely responses is critical to the effectiveness of traffic routing by information strategies. The mixed logit structure is used for the aggregate behavior models to accommodate the behavioral heterogeneity across the population. An online calibration problem is proposed to calibrate the random parameters in the behavior models by using the least square estimator to minimize the gap between the predicted network flows and unfolding traffic dynamics. Background traffic, an important but rarely studied issue for modeling evacuation traffic, is also accounted for in the proposed problem. Numerical experiments are conducted to illustrate the importance of the calibration problem for addressing the system consistency issues and integrating the demand, supply, and disaster characteristics for more efficient evacuation operations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This paper investigates a strategic signal control, which anticipates travelers' route choice response and determines signal timings to optimize network‐wide objectives. In general traffic assignment models are used for anticipating this route choice response. However, model‐reality mismatch usually brings suboptimal solutions to the real system. A repeated anticipatory control resolves the suboptimality and addresses the modeling error by learning from information on model bias. This paper extends the repeated control approach and focuses on the estimation of flow sensitivity as well as its influence on control, which is a crucial issue in implementation of model bias correction. The main objective of this paper is first to analyze the estimation error in the real flow derivative that is estimated from noisy measurements. A dual control method is then presented, improving both optimization objective function and derivative estimation during the control process. The proposed dual algorithm is tested on a simple network as well as on a midsize network. Numerical examples confirm the reliable performance of the new reality‐tracking control strategy and its ability to identify (local) optimal solutions on real traffic networks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents an integrated framework for effective coupling of a signal timing estimation model and dynamic traffic assignment (DTA) in feedback loops. There are many challenges in effectively integrating signal timing tools with DTA software systems, such as data availability, exchange format, and system coupling. In this research, a tight coupling between a DTA model with various queue‐based simulation models and a quick estimation method Excel‐based signal control tool is achieved and tested. The presented framework design offers an automated solution for providing realistic signal timing parameters and intersection movement capacity allocation, especially for future year scenarios. The framework was used to design an open‐source data hub for multi‐resolution modeling in analysis, modeling and simulation applications, in which a typical regional planning model can be quickly converted to microscopic traffic simulation and signal optimization models. The coupling design and feedback loops are first demonstrated on a simple network, and we examine the theoretically important questions on the number of iterations required for reaching stable solutions in feedback loops. As shown in our experiment, the current coupled application becomes stable after about 30 iterations, when the capacity and signal timing parameters can quickly converge, while DTA's route switching model predominately determines and typically requires more iterations to reach a stable condition. A real‐world work zone case study illustrates how this application can be used to assess impacts of road construction or traffic incident events that disrupt normal traffic operations and cause route switching on multiple analysis levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The advancement of information and communication technology allows the use of more sophisticated information provision strategies for real-time congested traffic management in a congested network. This paper proposes an agent-based optimization modeling framework to provide personalized traffic information for heterogeneous travelers. Based on a space–time network, a time-dependent link flow based integer programming model is first formulated to optimize various information strategies, including elements of where and when to provide the information, to whom the information is given, and what alternative route information should be suggested. The analytical model can be solved efficiently using off-the-shelf commercial solvers for small-scale network. A Lagrangian Relaxation-based heuristic solution approach is developed for medium to large networks via the use of a mesoscopic dynamic traffic simulator.  相似文献   

18.
This paper is an attempt to develop a generic simulation‐based approach to assess transit service reliability, taking into account interaction between network performance and passengers' route choice behaviour. Three types of reliability, say, system wide travel time reliability, schedule reliability and direct boarding waiting‐time reliability are defined from perspectives of the community or transit administration, the operator and passengers. A Monte Carlo simulation approach with a stochastic user equilibrium transit assignment model embedded is proposed to quantify these three reliability measures of transit service. A simple transit network with a bus rapid transit (BRT) corridor is analysed as a case study where the impacts of BRT components on transit service reliability are evaluated preliminarily.  相似文献   

19.
This study proposes a multi-criteria decision support methodology to enable the prioritization of potential alternative transportation system operations strategies and then demonstrates the effectiveness of the methodology using a case study involving truck operations. The primary feature of this methodology is its ability to help policymakers consider economic, public, and private sector standpoints simultaneously. The economic criterion is cost to the public sector where four criteria related to truck impacts on the transportation system are incorporated. These are traffic congestion, safety hazards, air pollution, and pavement damage. In addition, reliability and productivity are regarded as metrics representing the private sector viewpoint since they can significantly affect profitability. The methodology combines qualitative and quantitative aspects of these standpoints. In order to demonstrate the applicability of this methodology, a corridor with some of the highest truck traffic in the US is selected as a case study and three forms of left lane restrictions for trucks are considered. For qualitative analysis, survey data were collected from two groups classified as public agency and transportation industry professionals who are experts in trucking. In addition, a micro traffic simulation model was used to produce various performance measurements that can describe quantitative impacts. As a result, the methodology provides a rational argument for prioritizing potential alternative truck strategies.  相似文献   

20.
ABSTRACT

This paper presents an overview of the recent developments in traffic flow modelling and analysis using macroscopic fundamental diagram (MFD) as well as their applications. In recent literature, various aggregated traffic models have been proposed and studied to analyse traffic flow while enhancing network efficiency. Many of these studies have focused on models based on MFD that describes the relationship between aggregated flow and aggregated density of transport networks. The analysis of MFD has been carried out based on experimental data collected from sensors and GPS, as well as simulation models. Several factors are found to influence the existence and shape of MFD, including traffic demand, network and signal settings, and route choices. As MFD can well express the traffic dynamics of large urban transport networks, it has been extensively applied to traffic studies, including the development of network-wide control strategies, network partitioning, performance evaluation, and road pricing. This work also presents future extensions and research directions for MFD-based traffic modelling and applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号