首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study proposes a formulation of the within-day dynamic stochastic traffic assignment problem. Considering the stochastic nature of route choice behavior, we treat the solution to the assignment problem as the conditional joint distribution of route traffic, given that the network is in dynamic stochastic user equilibrium. We acquire the conditional joint probability distribution using Bayes’ theorem. A Metropolis–Hastings sampling scheme is developed to estimate the characteristics (e.g., mean and variance) of the route traffic. The proposed formulation has no special requirements for the traffic flow models and user behavior models, and so is easily implemented.  相似文献   

2.
Using the schedule-based approach, in which scheduled time-tables are used to describe the movement of vehicles, a dynamic transit assignment model is formulated. Passengers are assumed to travel on a path with minimum generalized cost which consists of four components: in-vehicle time; waiting time; walking time; and a time penalty for each line change. With the exception of in-vehicle time, each of the other cost components is weighted by a sensitivity coefficient which varies among travelers and is defined by a density function. This time-dependent and stochastic minimum path is generated by a specially developed branch and bound algorithm. The assignment procedure is conducted over a period in which both passenger demand and train headways are varying. Due to the stochastic nature of the assignment problem, a Monte Carlo approach is employed to solve the problem. A case study using the Mass Transit Railway System in Hong Kong is given to demonstrate the model and its potential applications.  相似文献   

3.
The paper adopts the framework employed by the existing dynamic assignment models, which analyse specific network forms, and develops a methodology for analysing general networks. Traffic conditions within a link are assumed to be homogeneous, and the time varying O-D travel times and traffic flow patterns are calculated using elementary relationships from traffic flow theory and link volume conservation equations. Each individual is assumed to select a departure time and a route by trading off the travel time and schedule delay associated with each alternative. A route is considered as reasonable if it includes only links which do not take the traveller back to the origin. The set of reasonable routes is not consistant but depends on the time that an individual decides to depart from his origin. Equilibrium distributions are derived from a Markovian model which describes the evolution of travel patterns from day to day. Numerical simulation experiments are conducted to analyse the impact of different work start time flexibilities on the time dependent travel patterns. The similarity between link flows and travel times obtained from static and dynamic stochastic assignment is investigated. It is shown that in congested networks the application of static assignment results in travel times which are lower than the ones predicted by dynamic assignment.  相似文献   

4.
In this paper, we perform a rigorous analysis on a link-based day-to-day traffic assignment model recently proposed in He et al. (2010). Several properties, including the invariance set and the constrained stability, of this dynamical process are established. An extension of the model to the asymmetric case is investigated and the stability result is also established under slightly more restrictive assumptions. Numerical experiments are conducted to demonstrate the findings.  相似文献   

5.
This paper is concerned with the system optimum-dynamic traffic assignment (SO-DTA) problem when the time-dependent demands are random variables with known probability distributions. The model is a stochastic extension of a deterministic linear programming formulation for SO-DTA introduced by Ziliaskopoulos (Ziliaskopoulos, A.K., 2000. A linear programming model for the single destination system optimum dynamic traffic assignment problem, Transportation Science, 34, 1–12). The proposed formulation is chance-constrained based and we demonstrate that it provides a robust SO solution with a user specified level of reliability. The model provides numerous insights and can be a useful tool in producing robust control and management strategies that account for uncertainty in applications where SO-DTA is relevant (e.g. evacuation modeling, computing alternate routes around freeway incidents and establishing lower bounds on network performance).  相似文献   

6.
The paper proposes a first-order macroscopic stochastic dynamic traffic model, namely the stochastic cell transmission model (SCTM), to model traffic flow density on freeway segments with stochastic demand and supply. The SCTM consists of five operational modes corresponding to different congestion levels of the freeway segment. Each mode is formulated as a discrete time bilinear stochastic system. A set of probabilistic conditions is proposed to characterize the probability of occurrence of each mode. The overall effect of the five modes is estimated by the joint traffic density which is derived from the theory of finite mixture distribution. The SCTM captures not only the mean and standard deviation (SD) of density of the traffic flow, but also the propagation of SD over time and space. The SCTM is tested with a hypothetical freeway corridor simulation and an empirical study. The simulation results are compared against the means and SDs of traffic densities obtained from the Monte Carlo Simulation (MCS) of the modified cell transmission model (MCTM). An approximately two-miles freeway segment of Interstate 210 West (I-210W) in Los Ageles, Southern California, is chosen for the empirical study. Traffic data is obtained from the Performance Measurement System (PeMS). The stochastic parameters of the SCTM are calibrated against the flow-density empirical data of I-210W. Both the SCTM and the MCS of the MCTM are tested. A discussion of the computational efficiency and the accuracy issues of the two methods is provided based on the empirical results. Both the numerical simulation results and the empirical results confirm that the SCTM is capable of accurately estimating the means and SDs of the freeway densities as compared to the MCS.  相似文献   

7.
This paper presents a comprehensive econometric modelling framework for daily activity program generation. It is for day-specific activity program generations of a week-long time span. Activity types considered are 15 generic categories of non-skeletal and flexible activities. Under the daily time budget and non-negativity of participation rate constraints, the models predict optimal sets of frequencies of the activities under consideration (given the average duration of each activity type). The daily time budget considers at-home basic needs and night sleep activities together as a composite activity. The concept of composite activity ensures the dynamics and continuity of time allocation and activity/travel behaviour by encapsulating altogether the activity types that are not of our direct interest in travel demand modelling. Workers’ total working hours (skeletal activity and not a part of the non-skeletal activity time budget) are considered as a variable in the models to accommodate the scheduling effects inside the generation model of non-skeletal activities. Incorporation of previous day’s total executed activities as variables introduces day-to-day dynamics into the activity program generation models. The possibility of zero frequency of any specific activity under consideration is ensured by the Kuhn-Tucker optimality conditions used for formulating the model structure. Models use the concept of random utility maximization approach to derive activity program set. Estimations of the empirical models are done using the 2002–2003 CHASE survey data set collected in Toronto.
Eric J. MillerEmail:
  相似文献   

8.
This paper focuses on computational model development for the probit‐based dynamic stochastic user optimal (P‐DSUO) traffic assignment problem. We first examine a general fixed‐point formulation for the P‐DSUO traffic assignment problem, and subsequently propose a computational model that can find an approximated solution of the interest problem. The computational model includes four components: a strategy to determine a set of the prevailing routes between each origin–destination pair, a method to estimate the covariance of perceived travel time for any two prevailing routes, a cell transmission model‐based traffic performance model to calculate the actual route travel time used by the probit‐based dynamic stochastic network loading procedure, and an iterative solution algorithm solving the customized fixed‐point model. The Ishikawa algorithm is proposed to solve the computational model. A comparison study is carried out to investigate the efficiency and accuracy of the proposed algorithm with the method of successive averages. Two numerical examples are used to assess the computational model and the algorithm proposed. Results show that Ishikawa algorithm has better accuracy for smaller network despite requiring longer computational time. Nevertheless, it could not converge for larger network. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Foresee traffic conditions and demand is a major issue nowadays that is very often approached using simulation tools. The aim of this work is to propose an innovative strategy to tackle such problem, relying on the presentation and analysis of a behavioural dynamic traffic assignment.The proposal relies on the assumption that travellers take routing policies rather than paths, leading us to introduce the possibility for each simulated agent to apply, in real time, a strategy allowing him to possibly re-route his path depending on the perceived local traffic conditions, jam and/or time already spent in his journey.The re-routing process allows the agents to directly react to any change in the road network. For the sake of simplicity, the agents’ strategy is modelled with a simple neural network whose parameters are determined during a preliminary training stage. The inputs of such neural network read the local information about the route network and the output gives the action to undertake: stay on the same path or modify it. As the agents use only local information, the overall network topology does not really matter, thus the strategy is able to cope with large and not previously explored networks.Numerical experiments are performed on various scenarios containing different proportions of trained strategic agents, agents with random strategies and non strategic agents, to test the robustness and adaptability to new environments and varying network conditions. The methodology is also compared against existing approaches and real world data. The outcome of the experiments suggest that this work-in-progress already produces encouraging results in terms of accuracy and computational efficiency. This indicates that the proposed approach has the potential to provide better tools to investigate and forecast drivers’ choice behaviours. Eventually these tools can improve the delivery and efficiency of traffic information to the drivers.  相似文献   

10.
Abstract

In this paper a route-based dynamic deterministic user equilibrium assignment model is presented. Some features of the linear travel time model are first investigated and then a divided linear travel time model is proposed for the estimation of link travel time: it addresses the limitations of the linear travel time model. For the application of the proposed model to general transportation networks, this paper provides thorough investigations on the computational issues in dynamic traffic assignment with many-to-many OD pairs and presents an efficient solution procedure. The numerical calculations demonstrate that the proposed model and solution algorithm produce satisfactory solutions for a network of substantial size with many-to-many OD pairs. Comparisons of assignment results are also made to show the impacts of incorporation of different link travel time models on the assignment results.  相似文献   

11.
A predictive continuum dynamic user-optimal (PDUO-C) model is formulated in this study to investigate the dynamic characteristics of traffic flow and the corresponding route-choice behavior of travelers within a region with a dense urban road network. The modeled region is arbitrary in shape with a single central business district (CBD) and travelers continuously distributed over the region. Within this region, the road network is represented as a continuum and travelers patronize a two-dimensional continuum transportation system to travel to the CBD. The PDUO-C model is solved by a promising solution algorithm that includes elements of the finite volume method (FVM), the finite element method (FEM), and the explicit total variation diminishing Runge-Kutta (TVD-RK) time-stepping method. A numerical example is given to demonstrate the utility of the proposed model and the effectiveness of the solution algorithm in solving this PDUO-C problem.  相似文献   

12.
This paper proposes a stochastic dynamic transit assignment model with an explicit seat allocation process. The model is applicable to a general transit network. A seat allocation model is proposed to estimate the probability of a passenger waiting at a station or on-board to get a seat. The explicit seating model allows a better differentiation of in-vehicle discomfort experienced by sitting and standing passengers. The paper proposes simulation procedures for calculating the sitting probability of each type of passengers. A heuristic solution algorithm for finding an equilibrium solution of the proposed model is developed and tested. The numerical tests show significant influences of the seat allocation model on equilibrium departure time and route choices of passengers. The proposed model is also applied to evaluate the effects of an advanced public transport information system (APTIS) on travellers’ decision-making.  相似文献   

13.
In this paper, a predictive dynamic traffic assignment model in congested capacity-constrained road networks is formulated. A traffic simulator is developed to incrementally load the traffic demand onto the network, and updates the traffic conditions dynamically. A time-dependent shortest path algorithm is also given to determine the paths with minimum actual travel time from an origin to all the destinations. The traffic simulator and time-dependent shortest path algorithm are employed in a method of successive averages to solve the dynamic equilibrium solution of the problem. A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

14.
Moving bottlenecks in highway traffic are defined as a situation in which a slow-moving vehicle, be it a truck hauling heavy equipment or an oversized vehicle, or a long convey, disrupts the continuous flow of the general traffic. The effect of moving bottlenecks on traffic flow is an important factor in the evaluation of network performance. This effect, though, cannot be assessed properly by existing transportation tools, especially when the bottleneck travels relatively long distances in the network.This paper develops a dynamic traffic assignment (DTA) model that can evaluate the effects of moving bottlenecks on network performance in terms of both travel times and traveling paths. The model assumes that the characteristics of the moving bottleneck, such as traveling path, physical dimensions, and desired speed, are predefined and, therefore, suitable for planned conveys.The DTA model is based on a mesoscopic simulation network-loading procedure with unique features that allow assessing the special dynamic characteristics of a moving bottleneck. By permitting traffic density and speed to vary along a link, the simulation can capture the queue caused by the moving bottleneck while preserving the causality principles of traffic dynamics.  相似文献   

15.
A multimodal, multiclass stochastic dynamic traffic assignment model was developed to evaluate pre‐trip and enroute travel information provision strategies. Three different information strategies were examined: user optimum [UO], system optimum [SO] and mixed optimum [MO]. These information provision strategies were analyzed based on the levels of traffic congestion and market penetration rate for the information equipment. Only two modes, bus and car, were used for evaluating and calculating the modal split ratio. Several scenarios were analyzed using day‐to‐day and within day dynamic models. From the results analyzed, it was found that when a traffic manager provides information for drivers using the UO strategy and drivers follow the provided information absolutely, the total travel time may increases over the case with no information. Such worsening occurs when drivers switch their routes and face traffic congestion on the alternative route. This phenomenon is the 'Braess Paradox'.  相似文献   

16.
A cell-based variant of the Merchant-Nemhauser (M-N) model is proposed for the system optimum (SO) dynamic traffic assignment (DTA) problem. Once linearized and augmented with additional constraints to capture cross-cell interactions, the model becomes a linear program that embeds a relaxed cell transmission model (CTM) to propagate traffic. As a result, we show that CTM-type traffic dynamics can be derived from the original M-N model, when the exit-flow function is properly selected and discretized. The proposed cell-based M-N model has a simple constraint structure and cell network representation because all intersections and cells are treated uniformly. Path marginal costs are defined using a recursive formula that involves a subset of multipliers from the linear program. This definition is then employed to interpret the necessary condition, which is a dynamic extension of the Wardrop’s second principle. An algorithm is presented to solve the flow holding back problem that is known to exist in many discrete SO-DTA models. A numerical experiment is conducted to verify the proposed model and algorithm.  相似文献   

17.
There is significant current interest in the development of models to describe the day-to-day evolution of traffic flows over a network. We consider the problem of statistical inference for such models based on daily observations of traffic counts on a subset of network links. Like other inference problems for network-based models, the critical difficulty lies in the underdetermined nature of the linear system of equations that relates link flows to the latent path flows. In particular, Bayesian inference implemented using Markov chain Monte Carlo methods requires that we sample from the set of route flows consistent with the observed link flows, but enumeration of this set is usually computationally infeasible.We show how two existing conditional route flow samplers can be adapted and extended for use with day-to-day dynamic traffic. The first sampler employs an iterative route-by-route acceptance–rejection algorithm for path flows, while the second employs a simple Markov model for traveller behaviour to generate candidate entire route flow patterns when the network has a tree structure. We illustrate the application of these methods for estimation of parameters that describe traveller behaviour based on daily link count data alone.  相似文献   

18.
One of the most common motivations for public transport investments is to reduce congestion and increase capacity. Public transport congestion leads to crowding discomfort, denied boardings and lower service reliability. However, transit assignment models and appraisal methodologies usually do not account for the dynamics of public transport congestion and crowding and thus potentially underestimate the related benefits.This study develops a method to capture the benefits of increased capacity by using a dynamic and stochastic transit assignment model. Using an agent-based public transport simulation model, we dynamically model the evolution of network reliability and on-board crowding. The model is embedded in a comprehensive framework for project appraisal.A case study of a metro extension that partially replaces an overloaded bus network in Stockholm demonstrates that congestion effects may account for a substantial share of the expected benefits. A cost-benefit analysis based on a conventional static model will miss more than a third of the benefits. This suggests that failure to represent dynamic congestion effects may substantially underestimate the benefits of projects, especially if they are primarily intended to increase capacity rather than to reduce travel times.  相似文献   

19.
This paper focuses on the off-line stochastic dynamic traffic assignment (DTA) problem as part of a hybrid framework that combines off-line and on-line strategies to solve the on-line DTA problem. The primary concept involves the explicit recognition of stochasticity in O–D demand and/or network supply conditions to determine a robust off-line a priori solution that serves as the initial solution on-line. This strategy ensures that the computationally intensive components, which exploit historical data, are executed off-line while circumventing the need for very accurate on-line O–D demand forecast models. Thereby, efficient on-line reactive strategies could be used to address unfolding traffic conditions. The paper investigates the robustness of the off-line a priori DTA solution under plausible on-line situations. The results illustrate the superiority of the a priori solution over the currently used mean O–D demand-based solution for on-line route guidance applications.  相似文献   

20.
In this paper, we propose a new model for the within-day Dynamic Traffic Assignment (DTA) on road networks where the simulation of queue spillovers is explicitly addressed, and a user equilibrium is expressed as a fixed-point problem in terms of arc flow temporal profiles, i.e., in the infinite dimension space of time’s functions. The model integrates spillback congestion into an existing formulation of the DTA based on continuous-time variables and implicit path enumeration, which is capable of explicitly representing the formation and dispersion of vehicle queues on road links, but allows them to exceed the arc length. The propagation of congestion among adjacent arcs will be achieved through the introduction of time-varying exit and entry capacities that limit the inflow on downstream arcs in such a way that their storage capacities are never exceeded. Determining the temporal profile of these capacity constraints requires solving a system of spatially non-separable macroscopic flow models on the supply side of the DTA based on the theory of kinematic waves, which describe the dynamic of the spillback phenomenon and yield consistent network performances for given arc flows. We also devise a numerical solution algorithm of the proposed continuous-time formulation allowing for “long time intervals” of several minutes, and give an empirical evidence of its convergence. Finally, we carry out a thorough experimentation in order to estimate the relevance of spillback modeling in the context of the DTA, compare the proposed model in terms of effectiveness with the Cell Transmission Model, and assess the efficiency of the proposed algorithm and its applicability to real instances with large networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号