共查询到15条相似文献,搜索用时 15 毫秒
1.
建立了适合于车辆自适应巡航控制系统精确的车辆纵向动力学模型,简化了自动变速器模型,采用混合模糊PID控制算法实现了车辆自适应巡航系统"定速"和"跟驰"两个控制目标.仿真结果表明,该控制算法具有响应速度快、超调量小、能够消除系统偏差等优点. 相似文献
2.
舒红 《西安公路交通大学学报》1995,15(2):38-44
本文在多刚体系统动力学Schiehlen-Kreuzer方法和Roberson-Wittenburg方法的基础上,推导了三维车辆多刚体系统矩阵形式的动力学方程,为开发通用的车辆平顺性分析软件提供了理论基础。 相似文献
3.
本文中针对基于分层控制结构的车辆队列上、下层控制缺少联系的问题,提出了车辆队列跟驰与个体车辆动力学稳定性协调控制的思路,其基本思想是在保证队列中个体车辆安全稳定行驶的同时,尽可能实现队列跟驰控制的目标。基于非线性模型预测控制(nonlinear model predictive control, NMPC)方法设计了车辆队列协调控制方案,设计了包括跟驰间距误差、跟驰速度误差以及车速与车轮圆周速度差3个子目标的优化目标函数,将队列跟驰与车辆动力学稳定性的协调控制转化为约束优化控制问题;基于序列二次规划(sequential quadratic programming, SQP)方法进行求解,得到车辆前、后轴的制动/驱动力矩来实现上层决策输出的期望跟驰加速度。基于由3车辆组成的非线性队列模型对控制方案进行了仿真分析,结果表明,所提出的基于NMPC的车辆队列协调控制策略可以在大范围操纵工况下,在保证车辆安全稳定行驶的基础上实现队列的跟驰控制。 相似文献
4.
5.
6.
针对智能车辆纵向运动时的交通道路适应性问题,考虑路面附着系数和前车运动速度等因素,研究了智能车辆纵向运动决策与控制方法。论文研究了基于车头时距的纵向运动决策方法并建立不同驾驶行为的目标车速模型,运用变论域模糊推理算法设计了目标加速度模型。基于纵向动力学模型,运用自适应反演滑模控制算法建立了驱动控制器和制动控制器。对高附着系数路面和低附着系数路面的行驶工况进行仿真试验验证,结果表明,在不同的附着系数路面和前车变速行驶条件下,智能车辆能实时、合理地决策目标车速、目标加速度,实现安全、高效、稳定的跟驰。 相似文献
7.
为了提升队列行驶的经济性,提出了一种高速公路场景下的云支持的队列预测性巡航控制方法(CPPCC),并进行真实道路和车辆数据模型的仿真实验。该方法采用了分层式结构,上层为云端的队列速度规划层,下层为队列稳定控制层。云端的速度规划层,考虑了道路坡度的滚动域的动态规划(RDP)算法,实现队列行驶的经济性目标。下层的车端队列稳定控制层,搭载了分布式模型预测控制器(DMPC),来跟踪云端发送速度,同时考虑了队列的稳定控制。结果表明:与传统的前车与领航车跟随的定速巡航队列(PLF-CC)方法相比,在行驶时间减小0.24%的前提下,本文所提出的方法节省6.04%的能源。 相似文献
8.
9.
10.
首先介绍了目前车辆动力学稳定性控制的研究现状.提出了基于联合仿真平台进行控制仿真研究的新思路;其次详细分析了车辆动力学稳定性控制的原理。应用直接横摆力矩状态反馈控制策略,基于ADAMS/Car和Matlab/simulink的联合仿真技术.采用阶跃转向和单移线仿真工况有效验证了该控制策略的正确性,提高车辆在危险工况下的稳定性和可控性,为实际设计车辆动力学稳定性控制系统提供了理论基础。 相似文献
11.
12.
为了减少智能驾驶车辆的纵向车速控制的时滞,提高主动抗扰性,提出一种基于扰动观测的纵向车速控制算法,并进行了实车验证。模型中,采用前馈控制模块,并提前输出控制量,来提高车速跟随的响应性;以主动抗扰控制(ADRC)模块作为反馈环节,采用扩张状态观测器(ESO)在线估计内外部扰动,并在控制端进行补偿,实现了对车速的精确闭环控制。在弯道、环岛等路况下进行了实车实验。结果表明:该算法可以在5 s内控制车速从怠速快速跟踪到目标车速,总体平均误差为0.17 km/h。因而,该算法较传统的比例积分微分(PID)有更好的响应性、控制精度和抗扰性。 相似文献
13.
设计了一种考虑参数估计的模型预测控制(MPC)算法的、智能辅助驾驶的商用车的车道保持算法,对于难以直接测量的质量和横向速度进行估计。建立车辆动力学模型和状态误差方程,通过扩展Kalman滤波(EKF)和递推最小二乘法(RLS)分别对车辆的横向速度、质量进行估计。基于估计得到的车辆参数,设计MPC车道保持控制器。构建硬件在环(HIL)仿真平台,设置不同的测试工况对车道保持算法进行了验证。结果表明:与普通MPC相比,在偏移回正工况中,车辆纠偏消耗的时间减少28.6%,并且超调量更小;高速路工况的横向位置偏差的均方根误差减小了4.2 cm。该方法提升了纠偏能力和跟踪精度,降低了传感器成本。 相似文献
14.
针对道路曲率变化范围较大时,智能车辆在大曲率道路工况车道保持控制精度低的问题,提出一种基于可拓切换控制理论的智能车辆车道保持控制系统,该车道保持系统由上层可拓控制器和下层控制器两部分组成。在上层可拓控制器中,通过车道线检测得到车辆相对于道路的位置信息和道路曲率信息。根据可拓集合理论,选取预瞄点处横向位置偏差和前方道路曲率值作为可拓集合的特征值并划分可拓集合,求解关联函数,并根据关联函数值将车辆-道路系统状态分为经典域、可拓域和非域。在下层控制器中,在经典域采用基于横向位置偏差和航向偏差的PID反馈控制器,在可拓域中采用基于前方道路曲率的PID前馈-反馈控制器,非域中车辆-道路系统处于完全失控状态,采取紧急制动。2种仿真工况结果表明:相比于单一PID反馈控制,提出的车道保持控制系统,有效抑制了在大曲率道路下的跟踪误差值,提高了智能驾驶汽车在时变曲率的道路工况下车道保持控制精度和工况适应性。 相似文献
15.
何祥坤杨恺明季学武武健刘亚辉 《汽车安全与节能学报》2017,(2):170-177
为提高汽车在极限工况下的行驶稳定性,提出了一种基于集成式线控液压制动(IEHB)系统的车辆动力学稳定性控制策略。在多学科领域复杂系统建模仿真平台(AMESim)中建立了IEHB执行机构、15自由度非线性车辆动力学物理仿真模型;采用分层控制构架,运用线性比例控制与非线性补偿控制设计了横摆力矩控制层,设计了制动力矩分配层和执行层以保证被控车辆对参考模型层输出的跟踪品质。结果表明:相比于基于传统车身电子稳定性控制系统(ESC)的动力稳定性控制系统,横摆角速度峰值跟踪误差减少13.6%,收敛时间缩短1.3 s,侧倾角、侧偏角、侧向加速度等也均有明显改善,车辆行驶稳定性显著提高。因而,本控制方法能确保车辆在极限工况下快速、准确地跟踪参考模型输出。 相似文献