首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
简支变连续桥梁兼具简支梁和连续梁的特点,且随着施工进展而发生体系转换,而导致其正负弯矩区的配筋形式多种多样.结合4跨40 m简支变连续T梁的设计与施工,利用有限元软件建立分析模型,讨论不同配筋形式和不同的有效预应力对简支变连续梁式桥的影响,得出以下结论:对于简支变连续桥梁,应综合考虑全桥应力分布、收缩徐变导致的长期效应进行负弯矩区预应力钢束设计,合理的设计方案可以很好地限制墩顶拉应力的产生,进而避免桥面裂缝的出现,但如果出现负弯矩钢束张拉不到位的情况,墩顶接缝位置很容易出现过大的拉应力导致出现横向裂缝.  相似文献   

2.
简支变连续桥梁兼具简支梁和连续梁的特点,但对于预应力混凝士超静定结构,混凝士徐变变形受结构多余约束的制约,势必会导致结构徐变的次内力.结合4×40 m简支变连续T梁的施工,利用MIDAS软件建立分析模型,讨论了不同收缩徐变模式和不同的加载龄期对简支变连续梁式桥应力及位移的影响,得出以下结论:随着存梁时间的不断增加,因收缩徐变引起的墩顶负弯矩区上缘应力越来越小,下缘应力越来越大;另外,因收缩徐变引起各跨跨中位移不断减小,说明存梁时间越短,成桥后徐变引起的位移越明显.  相似文献   

3.
水磨湾特大桥合龙段预顶推施工   总被引:1,自引:0,他引:1  
张超  周东久 《中外公路》2005,25(3):69-71
温度和后期混凝土收缩徐变在桥梁合龙后产生一定的收缩量,迫使两主墩向跨中方向位移,墩顶、墩底产生较大的弯矩,同时主梁受到混凝土纤维的限制产生拉应力。对结构造成危害。该桥通过在中跨合龙前预先向两岸施加的一个水平推力。以抵消混凝土收缩徐变及降温引起的收缩量,改善了主梁和墩顶的受力状态。  相似文献   

4.
税欢  陈军 《城市道桥与防洪》2021,(11):192-193,205
在城市建设过程中,桥梁是跨越障碍物比较常用的结构.中等跨径桥梁中最常采用的结构形式就是连续梁结构.采用连续梁结构的桥梁桥面接缝少、桥面连续,行车舒适性高、结构刚度大.连续梁桥具有上述优势的原因是连续梁符合平截面假定,在梁体上同时存在正负弯矩,正负弯矩相互抵消后产生的绝对弯矩值小于同跨径的简支梁桥[1].所以可以采用变截面且降低梁高从而节省材料.但连续梁在结构中应用时,中间支座处的负弯矩区会出现梁体上面板受拉,受拉的混凝土板产生裂缝.裂缝产生后,雨雪积水及其他液体渗入梁体,造成梁体混凝土腐蚀以及梁体内钢筋锈蚀,降低梁体使用安全,增加桥梁使用过程中的维护成本[2].因此,研究将玄武岩纤维掺入普通混凝土中制备成玄武岩纤维混凝土,延缓连续梁负弯矩区的裂缝发展速度,控制裂纹的宽度.  相似文献   

5.
为了解连续钢板组合梁力学性能特点,并改善其负弯矩区易开裂的状况,以长沙至益阳段高速公路扩容工程4×30m连续钢板组合梁桥为背景,采用ANSYS软件建立组合梁有限元模型,分析组合梁结构施工过程及成桥阶段的应力分布,研究支点负弯矩区桥面板裂缝控制措施。结果表明,施工阶段简支状态下,连续钢板组合梁混凝土桥面板基本处于受压状态,钢梁跨中最大Von Mises应力约为70.5MPa,翼缘焊钉顺桥向剪力从跨中向两侧支点逐渐增加,最大值12kN;汽车活载作用下,墩顶处混凝土桥面板顺桥向最大拉应力为2.9MPa,钢梁最大Von Mises应力约为64.6 MPa,焊钉顺桥向剪力峰值约为22kN。采用调整施工顺序、墩顶区现浇微膨胀纤维混凝土、加强负弯矩区纵筋配置等措施有效调整了结构应力分布,减小负弯矩区的裂缝宽度。  相似文献   

6.
为解决大跨钢-混组合连续梁桥负弯矩区桥面板的开裂问题,以某120 m主跨的钢-混组合连续梁桥为背景进行抗裂技术研究。采用MIDAS Civil 2020软件建立大桥空间杆系有限元模型,研究增强配筋技术、后浇成型技术、预应力技术以及抗拔不抗剪连接技术对桥面板抗裂性能的影响,并基于不同抗裂技术的工作原理和效果,提出适用于大跨钢-混组合连续梁桥负弯矩区桥面板的综合抗裂技术。结果表明:增强配筋技术可以有效控制裂缝宽度,但当配筋率超过0.015后,效果明显降低;采用后浇成型技术,调整混凝土桥面板的浇筑顺序可明显降低成桥时负弯矩区桥面板应力;张拉预应力筋可有效提升负弯矩区桥面板的预压应力水平;抗拔不抗剪连接件可显著降低活载下负弯矩区桥面板应力水平;采取优化桥面板混凝土浇筑顺序、在负弯矩区布置抗拔不抗剪连接件同时施加预应力、增加预应力锚固区的配筋率的综合抗裂技术,可明显降低负弯矩区桥面板拉应力,同时对桥梁结构的其他力学性能无明显影响。  相似文献   

7.
为研究简支变连续T梁桥施工全过程应力变化情况及影响因素,结合贵阳摆拢大桥,对其各个施工阶段的应力变化进行实时监测,并建立有限元模型分析该桥施工全过程的应力变化。各阶段理论值和监测值较为吻合,监测数据和理论计算均表明:预应力是施工过程应力变化的主要影响因素;负弯矩区预应力的张拉对跨中应力有较为明显的影响;湿接缝处顶底板应力将在负弯矩束张拉后基本相当。  相似文献   

8.
为研究混凝土收缩、徐变对结合梁斜拉桥的影响机理及时效特性,以樟树赣江二桥(主跨400m的双塔双索面半飘浮体系结合梁斜拉桥)为背景进行分析。采用桥梁专业软件RM2006建立全桥有限元模型,对桥梁的时效影响机理、运营期不同构件的时效影响因素及不同结构体系的时效响应进行研究。研究结果表明,对于结合梁斜拉桥,桥面板收缩、徐变产生的主梁截面初始轴向应变是主梁中跨跨中下挠、边跨斜拉索松弛的主要原因,产生的主梁截面初始弯曲应变是主梁负弯矩出现的主要原因。桥面板收缩、恒载下桥面板徐变是引起边跨斜拉索松弛、主梁中跨跨中下挠的主要因素;桥塔收缩、徐变将引起桥塔附近斜拉索松弛,并使主梁产生局部负弯矩峰值。桥塔处竖向支座及辅助墩的设置会对结合梁斜拉桥的时变效应产生一定的不利影响,单纯从该角度来讲,全飘浮体系较其他体系更为合理。  相似文献   

9.
钢混组合梁桥由于其自重轻,跨越能力大的特点,近年来被逐步应用到大跨径连续梁桥上,发挥了两种材料结合的优势,扩展了连续梁桥的跨越能力。由于两种材料的差异性,在组合后受收缩徐变效应的影响,会导致结构内力重分布、产生附加变形。采用柔性连接件的组合梁在其结合面上会产生滑移,进一步增加附加变形。对于大跨径组合梁桥,其收缩徐变效应和滑移效应不容忽视,但影响程度和规律仍然不明确。以港珠澳大桥大跨径组合梁连续梁桥为背景,分析大跨径连续梁在有滑移时和收缩徐变效应下的影响。结果表明,在混凝土板收缩徐变作用下,有滑移时会导致位移增量和应力增量变大;置梁时间越长,主梁挠度越小,第1个月的置梁对挠度影响最为明显;收缩徐变使混凝土板的压应力减小,在成桥后期,中支点附近的混凝土板将出现拉应力;收缩徐变使钢梁顶的压应力增加,钢梁底的拉应力减小。  相似文献   

10.
以印尼雅加达收费公路项目为背景,研究印尼高架简支变连续小箱梁墩顶连接段受力特性。通过对墩顶连接段顶板钢束、板厚、隔离段长度、变截面等参数的优化分析,确定了预应力混凝土连接段和钢筋混凝土连接段的最佳构造方案。研究表明,对于预应力混凝土连接段,适当增加预应力钢束数量可减小连接段板顶拉应力;减小板厚有利于降低板顶的拉应力;隔离段长度增大反而会使得连接段上缘拉应力增大;连接段端部采用变截面不利于连接段受力。对于钢筋混凝土连接段,减小板厚是优化钢筋混凝土连接段受力特性的有效措施;隔离长度对连接段弯矩影响较小。  相似文献   

11.
针对简支变连续T梁桥负弯矩区段开裂等问题,提出了负弯矩区段改进设计,通过模型试验和有限元仿真对比分析了新、旧构造的力学性能,并进一步分析了钢束张拉力及支承形式对结构的影响。研究结果表明:新构造施工难度降低,与传统构造预应力损失变化规律基本一致;预应力张拉控制应力工况下的应力响应差别不大,新构造应力储备更占优势;预应力张拉控制应力变化对结构应力储备影响较大;双支座的"削峰作用"可使结构整体受力优于单支座的试验梁,但双支座出现脱空对结构受力不利。研究成果可为简支变连续T梁桥负弯矩区段构造改进技术提供支撑。  相似文献   

12.
2次负弯矩预应力筋的张拉和临时支座的拆除是先简支后连续结构体系桥梁施工的关键工序,不同的施工顺序会对结构内力产生不同影响。以4跨50 m T梁工程为例,对2次负弯矩预应力筋张拉和临时支座拆除的不同施工程序进行计算分析。分析表明:梁端湿接缝的预应力张拉顺序和临时支座的拆除顺序都会对结构内力产生一定影响。  相似文献   

13.
对简支和连续组合梁,按照全截面法基于有效模量比计算收缩徐变所退化的混凝土翼板面积和惯性矩,推导了各种收缩效应的计算公式。对比欧洲混凝土模式规范的新旧模型,结果表明:在简支梁的收缩自应力和挠度上,高强和普通混凝土几乎相同;在连续梁的收缩次弯矩上,高强略小于普通混凝土;按照MC1990收缩徐变模型将显著低估这些收缩效应,由此低估钢筋用量将可能引起混凝土开裂等结构的使用和安全问题。  相似文献   

14.
混凝土连续梁桥空心墩墩顶局部应力分析   总被引:3,自引:0,他引:3  
大跨度预应力混凝土连续梁桥桥墩是结构的关键部位之一,桥墩墩顶截面的受力很复杂。本文通过建立某连续梁桥空心墩的空间有限元模型,分析了空心墩在竖向荷载及温度荷载作用下的墩顶局部应力分布特征,指出在墩顶对称轴附近存在较大拉应力,特别在墩实体过渡段下部;而且在骤然降温时,桥墩外表面出现较大横向拉应力。因此要注意配筋,防止出现裂缝。  相似文献   

15.
为研究不同型式支座对桥梁结构受力性能的影响,文中以某40 m预应力混凝土简支T梁桥连续化改造加固为例,通过对2种不同型式支座下桥梁结构进行受力分析及对比,对双支座桥梁结构连续的支座选型展开研究。结果表明,相对于刚性支座,橡胶支座可以明显地减小墩顶负弯矩。在此基础上,对2种不同型号的弹性橡胶支座支反力进行承载能力极限验算,计算结果表明,GJZ 400×400×99型板式橡胶支座满足该类桥梁要求,相对合理。  相似文献   

16.
为研究有无顶推力合龙对多跨连续刚构桥合龙施工的影响,以三圣特大桥为例,建立5跨连续刚构桥的有限元模型,分别计算施工、合龙温度、混凝土收缩徐变等工况下引起的墩顶水平位移,推导出该桥顶推力的计算公式并得到合理顶推力值,分析在有无顶推力作用下桥梁结构的位移和应力变化。结果表明,顶推力与桥墩的墩顶水平位移线性相关;墩高较高(H≥80 m)时,有无顶推合龙的桥梁都处于安全状态,但不顶推合龙技术能降低施工难度,缩短施工周期,经济效益更为显著。  相似文献   

17.
采用解析方法对连续梁和连续刚构两种体系进行了受力及变形分析。刚构体系由于主墩对主梁的约束作用导致墩顶转角减小,结构刚度明显增加,跨中挠度、主梁墩顶及跨中弯矩减小。经过分析可知收缩徐变引起的跨中下挠与恒载作用下的跨中挠度基本成正比,因此刚构体系相比连续体系跨中下挠小。通过数值模拟分析验证了本文解析结论的正确性。  相似文献   

18.
针对两座典型的高速铁路大跨度预应力混凝土连续梁,在考虑收缩徐变后建立了列车-连续梁空间振动的有限单元分析模型,以德国低干扰谱生成轨道不平顺样本作为激励源,对两座大跨度连续梁的车桥空间振动响应进行了计算分析,结果表明:对于大跨度混凝土连续梁,考虑收缩徐变后,两座连续梁的脱轨系数和轮重减载率均在容许范围内,但数值都有所提高,脱轨系数最大增幅约4%,轮重减载率的最大增幅约10%;两座连续梁墩顶横向位移的增幅在约2%的范围内波动,混凝土收缩徐变对连续梁墩顶横向位移的影响不大;当列车速度以超过275m/s速度运行且考虑混凝土收缩徐变时,两座连续梁的动车Speling舒适性竖向指标会下降一个等级,列车运行速度越高,混凝土收缩徐变对舒适性指标的影响越明显,在设计过程当中必须考虑混凝土收缩徐变对列车走行性的影响。  相似文献   

19.
新旧混凝土梁横向拼接的收缩徐变效应   总被引:4,自引:0,他引:4  
为分析混凝土收缩徐变对新旧桥梁拼接的影响,在不考虑梁自重的情况下,采用弹性力学求解法分析了新旧梁横向拼接后新梁的收缩徐变效应,推导了拼接后新梁上的纵向拉应力及拼接处的剪力计算公式。以钢筋混凝土简支T型梁桥的拼接为例,比较了新梁在不同混凝土龄期时与旧梁拼接所产生的纵向拉应力和剪应力,同时还对比了不同环境年平均相对湿度对新梁上纵向拉应力和剪应力的影响。计算结果表明:拼接时新梁混凝土龄期和不同环境年平均相对湿度对拼接结构的受力影响较大,新旧梁拼接设计时须采取相应措施以减少混凝土收缩。  相似文献   

20.
为了研究下层混凝土的厚度对桥面板负弯矩区的影响,本文利用Midas/Civil和Midas/FEA有限元软件,建立杆系加实体的双层连续组合梁桥模型,通过改变负弯矩区下层混凝土的厚度,分析其对箱梁以及桥面板的影响,从而确定使得连续梁桥受力最为合理的下层混凝土厚度。主要结果为随着下层混凝土厚度的增加,箱梁的剪应力和拉应力会随之减小,桥面板的裂缝宽度也会随之减小。当厚度超过400mm时,箱梁的拉应力和桥面板裂缝宽度变化趋于平缓,综合考虑当其厚度在300-400mm之间时其结构受力最为合理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号