首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
孙军  岳真宏 《公路》2021,(2):156-160
为分析曲线钢箱梁桥施工过程中的抗倾覆稳定性,建立单箱梁和有临时加固设施的双箱梁数值模型,计算各支座的支撑反力。根据钢箱梁的不同受力特征,采用稳定系数法和支座反力法,计算曲线钢箱梁的抗倾覆稳定性系数。分析表明,对于结构整体倾覆分析而言,单箱梁和有临时加固设施的双箱梁的自重作用提供了结构的稳定力矩,使得在施工各工况下均不出现支座脱空的现象;单箱梁和有临时加固设施的曲线钢箱梁整体抗倾覆稳定性较好,各个阶段的抗倾覆系数均远大于规范的规定,桥梁结构不会发生侧向倾覆;双箱梁间设置临时加固设施,可以提高曲线钢箱梁的抗倾覆稳定性,在施工过程中,应加强双纵梁间的临时连接。  相似文献   

2.
跨京广铁路信阳编组场大桥为(150+150) m独塔曲线钢箱梁斜拉桥,塔高86 m,向曲线外倾斜3°。该桥采用不平衡水平转体法施工,转体重量达19 600 t,转体角度74°。针对斜塔施工过程中结构重心外移引起的倾覆稳定问题,以及斜塔曲梁斜拉索初张拉钢梁脱架难的问题,采用MIDAS Civil软件建立桥梁施工过程有限元模型,进行施工控制研究。施工过程中,采用砂筒+配重措施,以提高结构抗倾覆系数至1.303,保证桥塔施工过程的稳定性;提前拆除塔根处钢梁支架,减小斜拉索初张力,保证了钢梁安全顺利脱架,同时避免了钢梁扭转;运用桥梁转体智能监测控制技术实时监测转体过程,转速控制为0.65 (°)/min,转体过程平顺稳定,成桥后监测的主梁线形与斜拉索索力均满足规范要求。  相似文献   

3.
为了实现双幅转体桥在共同使用一个转体墩和一套转体系统的情况下成功转体,通过在双幅桥的梁间设置连接横梁及在墩顶桥面设置临时横向斜拉塔等措施,以有限元分析的方法结合实际工况,确定连接横梁及临时斜拉塔的设计参数,建立连接横梁及临时斜拉塔的计算模型,得出横梁及临时斜拉塔在转体各阶段的受力理论数据;通过在现场设置应力计等方式,实时收集转体各阶段横梁及临时斜拉塔的受力情况。通过对比理论数据与实际采集的数据后得出结论,采用以上措施能够实现双幅转体桥单支点同时转体施工,并且转体梁的横向变形及稳定均满足施工安全要求。  相似文献   

4.
为了实现双幅转体桥在共同使用一个转体墩和一套转体系统的情况下成功转体,通过在双幅桥的梁间设置连接横梁及在墩顶桥面设置临时横向斜拉塔等措施,以有限元分析的方法结合实际工况,确定连接横梁及临时斜拉塔的设计参数,建立连接横梁及临时斜拉塔的计算模型,得出横梁及临时斜拉塔在转体各阶段的受力理论数据;通过在现场设置应力计等方式,实时收集转体各阶段横梁及临时斜拉塔的受力情况。通过对比理论数据与实际采集的数据后得出结论,采用以上措施能够实现双幅转体桥单支点同时转体施工,并且转体梁的横向变形及稳定均满足施工安全要求。  相似文献   

5.
钢箱梁桥抗倾覆稳定性分析   总被引:1,自引:0,他引:1  
钢箱梁桥受力性能好,但结构的横向抗倾覆稳定性较差。该文采用Midas对工程实例进行建模计算,发现设计中存在的问题,讨论与横向抗倾覆稳定性有关的因素。  相似文献   

6.
为检验武汉市姑嫂树路高架桥转体平台墩结构和转体施工的安全性,对该桥转体平台墩的施工过程进行仿真分析.采用通用有限元分析软件ANSYS分别建立63号、64号墩(墩身、横梁、桩基础、承台及转体系统)分析模型,分析施工过程中结构的受力及变形.分析结果表明:在施工全过程中转体平台墩墩身及横梁结构受力及变形合理,结构安全;横梁纵向弯曲预应力有效地将M形转体平台墩中墩柱部分竖向力转移至两边墩柱上,使3个墩柱竖向力分配相对均衡;横梁预应力随上部结构施工进度分阶段张拉,使转体平台墩受力均匀且渐变,验证了在转体平台墩横梁上进行超大吨位高空单球铰转体的结构安全性.  相似文献   

7.
跨襄阳北编组站大桥为转体斜拉桥,转体时梁面以上塔高73 m,最大转体重量32 000 t,为提高转体过程中桥梁的抗倾覆稳定性,设计了基于齿轮齿轨传动的多点支撑转体系统。转体系统主要由转动系统(中心球铰、常规撑脚、滑道、齿条)及辅助支撑系统(驱动承力支腿、电气控制系统)组成。中心球铰设计最大承载28 000 t, 6个驱动承力支腿总设计承载6 000 t,通过6个驱动承力支腿的齿轮啮合齿轨实现桥梁转体。该转体系统通过降低中心球铰承受的竖向荷载,改善了承台及桩基的受力状态;转体过程中6个驱动承力支腿实时与滑道保持接触状态,提高了转体桥梁的抗倾覆稳定性。对转动结构和辅助支撑系统受力进行计算,结果表明该转体系统受力满足要求。工程实践验证了该转体系统的可靠性。  相似文献   

8.
为保证带外伸横梁的异形岔道梁桥抗倾覆稳定性,结合某工程实例综合采用了设置外伸横梁等4项构造措施。采用Midas Civil 2021建立了全桥梁格模型与全桥板单元模型并进行分析对比,分析了桥跨结构的倾覆破坏机理,提出了实用抗倾覆计算方法。研究表明:梁格法对此类桥梁的计算精度可以满足工程应用的要求;外伸横梁与B岔道根部弯曲破坏失效是桥梁倾覆的最终阶段和前提条件;外伸横梁越短,提供的抗倾覆力矩越大。本次设计采用的4项构造措施均可有效提高结构抗倾覆稳定性,安全系数为10.1,大于2.5,满足规范要求,可为同类桥梁抗倾覆优化设计(如减小外伸横梁根数、调整外伸横梁结构尺寸等)提供依据和参考。  相似文献   

9.
钢箱梁桥受力性能好,但结构的横向抗倾覆稳定性差,小半径的弯箱梁桥在重车偏载作用下存在倾覆失稳的可能性。以沈海复线福鼎北互通B匝道桥为例,利用Midas/civil建立模型进行计算,找到设计中存在的问题,研究与横向倾覆稳定性有关的参数对结构安全的影响。  相似文献   

10.
悬索桥扁平钢箱梁顶推施工受力分析   总被引:1,自引:0,他引:1  
某3跨地锚式悬索桥加劲梁为扁平钢箱梁,钢箱梁跨径组成为(40+430+40)m,采用多点临时墩顶推施工。为了确保钢箱梁在顶推施工过程中结构安全,建立有限元计算模型对顶推施工过程进行整体和局部受力分析。计算结果表明临时墩支点高程设置形式、滑道支承形式和横向偏位等对钢箱梁受力影响较大。根据计算结果提出了钢箱梁顶推施工过程线形控制、临时墩反力控制及局部应力施工控制等参数以及相应控制措施。实际顶推施工结果表明钢箱梁受力及线形控制较好。  相似文献   

11.
呼和浩特市巴彦淖尔路快速路跨越跨呼和浩特西站场咽喉区,共需跨越16股道,为选择合理桥型方案,尽量减少对运营铁路和地面道路的影响,分别对顶推连续钢箱梁、转体斜拉桥方案进行比选,并介绍连续钢箱梁结构设计和顶推施工步骤,建立了有限元模型,对桥梁运营及施工阶段结构受力进行分析。研究结果表明,顶推连续钢箱梁方案经济合理,结构受力满足规范要求,为同类型桥梁设计及施工提供参考。  相似文献   

12.
大跨度连续刚构柔性拱组合桥施工控制   总被引:2,自引:0,他引:2  
宜万铁路宜昌长江大桥主桥为(130+2×275+130) m连续刚构柔性拱组合桥,主梁采用单箱双室截面,拱肋采用钢管混凝土桁架拱.该桥采用"先梁后拱"法施工,其施工控制的难点和重点为主梁两合龙段同时对顶合龙与两跨拱肋竖转合龙,施工控制的内容主要包括线形控制和应力监测.采用预测控制法对施工误差进行分析、识别、调整;通过3种有限元模型对比,适当修正主梁预抛高值.施工过程中的线形和应力监控结果表明,主梁和拱肋成桥线形误差均控制在允许范围内,结构应力满足设计要求,施工控制效果良好.  相似文献   

13.
为确定合理的临时支撑间距与拆除时机、负弯矩区剪力连接件类型及是否设置桥面板预留槽等,以便于钢-混组合连续梁桥设置合理的预拱度,以某(40+75+75+40)m钢-混组合连续梁桥为背景,采用MIDAS Civil软件建立全桥有限元模型,分析相关设计与施工因素对预拱度设置的影响规律。结果表明:钢梁拼装时应采用临时密支撑,并在正弯矩区桥面板混凝土浇筑后再拆除临时支撑;负弯矩区应采用抗拔不抗剪连接件,桥面板正、负弯矩交界区域应设置桥面板预留槽;仅边跨设置向上的混凝土收缩徐变预拱度值,而中跨不需设向下的混凝土收缩徐变预挠度值。该桥边、中跨跨中钢梁制造预拱度分别为17.7mm和161.9mm,施工时考虑了10mm的弹性变形预抬值。成桥时组合梁线形误差在±10mm内,满足设计要求。  相似文献   

14.
艾溪湖大桥主桥设计   总被引:1,自引:0,他引:1  
艾溪湖大桥是一座30m+108m+30m三跨连续外倾式四索面下承式钢箱系杆景观拱桥,主桥结构的构成:正交异性板钢箱梁、钢拱肋、平行钢丝束吊杆及预应力钢绞线系杆。经结构受力分析,该桥各项力学性能、抗风抗震及结构稳定性均满足现行设计规范要求。  相似文献   

15.
波形钢腹板组合箱梁从根本上回避了一般预应力混凝土箱梁桥腹板开裂病害问题,合理地将钢、混凝土两种材料结合,改善结构力学性能并减轻结构自重,理论上波形钢腹板梁桥可以超过混凝土腹板梁桥达到更大的跨度。由于梁桥中墩墩顶处负弯矩承载力有限,通过负弯矩对比的方式,试设计主跨360 m的波形钢腹板组合梁桥,并建立有限元模型,对结构抗弯、抗剪承载力,以及连接件等进行计算,结果表明试设计方案是成立的。钢腹板整体屈曲稳定性是制约波形钢腹板梁桥跨径增大的主要因素之一。为解决现有的波形钢腹板型号应用在大跨度梁桥中整体屈曲强度折减较严重的问题,研究设置纵向横隔和采用大尺寸波形钢腹板型号的应对措施,从而为波形钢腹板梁桥向更大跨度发展做出积极探索。  相似文献   

16.
详细介绍了连-霍国道主干线鄯吐高速公路第二合同段连续箱梁施工中扣件式钢管支架的具体运用,主要从支架的布置、搭设、预压及支架预拱度测设等几方面阐述了扣件式钢管支架在箱梁施工中应注意的事项及应掌握的具体操作要领,旨在说明扣件式钢管支架只要运用得当、布置合理,其在连续箱梁施工中的运用是安全、稳定、可行的。  相似文献   

17.
孟加拉帕德玛大桥主桥由41孔跨度为150 m钢桁梁组成,由于钢梁为全焊接结构,采用浮吊与桥面吊机配合整孔安装的施工方案,钢桁梁吊装上桥后不具备线形调整的条件.钢梁竖向线形误差要求控制在±20 mm以内,对比国内同类桥梁,线形控制要求高;且支座下摆允许偏离设计位置±10 mm,整孔钢桁梁纵向制造长度控制难度大,通过研究影响预拱度理论计算的因素,以及预拱度的设置方法,为工程的顺利实施提供理论依据.其成果对同类国际工程具有参考意义.  相似文献   

18.
为解决带外伸横梁的钢箱梁桥横梁计算有效分布宽度问题,借助无限长板带对位荷载下的应力分布研究结果,导出了不同桥宽和不同宽度外伸横梁对应的有效分布宽度扩散角;然后分别采用板壳有限元模型和梁单元模型对实际工程中超宽桥梁外伸横梁受力进行对比分析,以验证导出的有效分布宽度扩散角的实用性和有效性。结果表明:采用导出的有效分布宽度扩散角的梁单元模型计算结果与板壳有限元模型计算结果非常接近,且能够包络板壳有限元模型的计算结果,是偏于安全的。  相似文献   

19.
石板坡长江大桥钢混结合段局部应力分析   总被引:5,自引:1,他引:5  
结合石板坡长江大桥的设计及施工特点,运用大型有限元软件ANSYS建立了石板坡大桥钢混结合段结构分析的空间有限元模型,钢箱梁用shell63壳单元模拟,混凝土箱梁用solid95实体单元模拟,预应力钢绞线用link8单元模拟,并采用约束方程模拟预应力筋和混凝土间的粘结作用.根据运营过程中的最不利荷载工况,分析了钢混结合段在4种工况下的应力状态,检验了设计的安全性与合理性.结果表明,除钢箱梁锚垫板下预应力管道支承钢板以及与混凝土箱梁结合面折角处存在应力集中现象、部分拉应力超出混凝土的抗拉强度外,结构总体受力合理,内部应力满足设计要求;鉴于钢混结合段的构造与受力都很复杂,建议在此部分的混凝土箱梁采用钢纤维混凝土作为加强措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号