首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
连镇铁路五峰山长江大桥为主跨1 092 m的公铁两用悬索桥,采用双主缆地锚式结构,其缆索系统由索鞍、主缆、索夹及吊索组成。该桥缆索系统施工过程较为复杂,为保证缆索系统施工满足验收标准的要求,对其主要参数敏感性进行分析,并开展施工精细化控制。结果表明:索鞍位置、主缆弹性模量、温度、主缆不圆度等参数均会对缆索体系的施工精度带来影响。根据施工全过程分析,在该桥缆索系统施工控制中,主索鞍共顶推11次,南、北塔累计顶推量分别为190 cm、196 cm;考虑实际钢丝直径、弹性模量和索鞍处曲线修正等,确定大桥主缆索股无应力长度为1 931.974~1 934.428 m;在主缆架设完成、紧缆后,测量实际空缆线形,按实际空缆线形对索夹位置及吊索长度进行修正。大桥缆索系统施工实测偏差结果均满足安装验收标准的要求。  相似文献   

2.
主缆线形对全桥的几何形状和受力具有决定性影响,精确计算其空缆线形和索股下料长度是确保悬索桥上部结构施工成功的关键。文中以南宁市良庆大桥为工程背景,对其主缆线形求解确定方法进行研究,应用基于解析迭代法编制的计算程序建立南宁市良庆大桥主缆线形计算分析模型,求解得到了主缆成桥线形、各索股的无应力下料长度、主缆空缆线形、索鞍预偏量和散索鞍预转角等控制参数,为良庆大桥设计和施工控制提供技术保障。  相似文献   

3.
介绍了基于分段悬链线法和抛物线法的自锚式悬索桥主缆成桥线形及空缆线形计算的原理和方法。成桥线形计算内容主要包括主缆理论成桥线形计算、主缆无应力索长计算、主缆与主索鞍切点计算及主索鞍位置计算。空缆线形计算内容主要包括索鞍偏移量计算、空缆理论线形计算及索夹安装位置计算。同时结合工程实例对比分析了抛物线法和分段悬链线法求解主缆成桥线形和空缆线形的误差影响。  相似文献   

4.
悬索桥主缆线形计算与施工控制   总被引:2,自引:0,他引:2  
吴伟胜  王仁贵 《公路》2005,(11):1-8
主缆是悬索桥的重要受力构件,精确计算其空缆线形、成桥线形、旌工过程控制和各索股无应力长度是悬索桥上部结构成败的关键。  相似文献   

5.
主缆无应力长度是悬索桥施工控制的重要参数之一,采用通用有限元软件Midas/Civil对中渡长江大桥主缆无应力长度进行分析,并对计算结果进行修正,得到了中渡长江大桥主缆各索股无应力长度表。同时,研究了主缆弹性模量、主缆钢丝平均直径、加劲梁自重等因素对主缆无应力长度的影响。结果表明:主缆无应力长度与主缆弹性模量、主缆钢丝平均直径呈正比关系,与加劲梁自重呈反比关系,并通过线性拟合得到相关比例系数,可为同类型桥梁主缆无应力长度施工控制提供借鉴。  相似文献   

6.
《公路》2017,(11)
以重庆江津至贵州习水高速公路笋溪河特大桥为研究对象,从施工监控的角度,对悬索桥线形控制中影响成桥线形、无应力索长、索鞍预偏量以及空缆线形的参数进行分析研究,选取了计算方法、主缆弹性模量、主缆自重、加劲梁自重、环境温度作为重点研究参数,采用解析法与Midas/Civil相结合的研究方法。通过计算得出结论,计算方法对线形计算有较大影响,对于特大跨悬索桥应采用高精度的分段悬链线法和节线法;主缆弹性模量、加劲梁重量、环境温度对主缆成桥标高、空缆标高、无应力索长、索鞍预偏量等几项线形指标的影响最大,敏感度最高,是施工监控中需要重点关注的参数指标;为提高主缆线形和成桥线形的监控精度,在架设之前,对材料参数和荷载参数进行准确统计和测定;架设过程中,需重点监控环境参数的变化。  相似文献   

7.
大跨径悬索桥主缆系统施工控制计算   总被引:19,自引:0,他引:19  
基于悬索桥在恒载作用下的力学特点,建立起了主缆施工控制计算的解析失代法,以此确定恒载状态下成桥线形、主缆无应力长度,并可迭代出空缆线形、主索鞍顶推预偏移量及索夹安装位置等。宜昌长江公路大桥的应用表明,该解析迭代的系统计算方法,收敛速度快、精度高,是一种有效计算方法。  相似文献   

8.
泰州长江公路大桥是国内外首座千米级双主跨三塔悬索桥,综述该桥上部结构安装施工的技术方案.中塔主索鞍由钢塔柱节段起吊安装设备吊装,边塔主索鞍、散索鞍采用门架悬臂式起吊系统安装;猫道为四跨连续形式,主跨猫道承重索采用托架法空中间接架设;主缆索股采用双线往复式牵引系统和门架拽拉式牵引方式施工,主缆紧缆完成后,根据主缆空缆线形进行索夹坐标计算,根据计算的坐标进行索夹的放样和安装.主缆用S形钢丝缠绕,然后进行涂装防护;钢箱梁利用液压提升跨缆吊机,采用小节段吊装方案进行吊装作业.  相似文献   

9.
一种自锚式悬索桥主缆线形的解析法   总被引:3,自引:5,他引:3  
在传统的地锚式悬索桥主缆线形方程的基础上,引入了自锚式悬索桥主缆、加劲梁和索塔的变形协调方程,得到一种自锚式悬索桥主缆线形的解析方法:该方法可以在不进行有限元分析的情况下,仅给出自锚式悬索桥的跨度、矢跨比以及主缆、加劲梁和索塔的截面属性,通过求解主缆线形方程和变形协调方程所组成的方程组,就能够求出主缆的初始线形和成桥线形、主缆的无应力长度、索鞍偏移量。该方法简单、准确、高效,已经成功地应用在金华康济桥的施工监控中,建成后主缆的成桥线形与设计线形非常接近,最大误差只有27mm,由于该方法能方便而快速地计算出索鞍的偏移量和主缆线形,对优化自锚式悬索桥边跨与主跨的比例提供了一种高效的算法。  相似文献   

10.
大跨悬索桥主缆系统施工控制计算方法研究   总被引:1,自引:0,他引:1  
悬索桥的施工控制不同于其他桥梁结构形式,主缆一经架设完成很难进行后期线形调整,精确计算主缆系统的施工控制参数尤为关键。针对已有计算方法存在的不足之处,基于悬索桥在恒载作用下的力学特点,提出一种主缆施工控制计算的解析迭代法,该法根据受力平衡条件和变形相容条件建立迭代方程,自动计入了柔索结构的所有非线性,可精确计算恒载状态下成桥线形、主缆无应力长度、空缆线形、主索鞍预偏移量等。四渡河大桥的实例应用表明该法具有较高精度。  相似文献   

11.
温度对悬索桥空缆线形的影响分析   总被引:1,自引:0,他引:1  
温度对悬索桥的线形有较大的影响。在悬索桥空缆架设施工中,温度不仅改变主缆索股的长度,由此引起各跨矢高和水平力的变化,也将引起主塔的偏住。这些都将导致主缆线形的改变。分析了主缆线形温变影响,在此基础上,提供了计算主缆线形、主塔偏位和索夹位置精确计算的程序设计方法,并以万州长江二桥实例加以说明.供桥梁施工技术人员参考。  相似文献   

12.
为研究地球曲率、温度、主缆弹性模量以及加劲梁恒载误差对2 000 m级超大跨度悬索桥主缆成桥线形的影响,以主跨2 180 m的广州狮子洋大桥为背景,采用BNLAS软件建立主桥有限元模型,基于单一变量法对上述参数的影响性进行分析。结果表明:地球曲率对超大跨度悬索桥的主缆成桥线形影响较大,可通过在索股制造时对分跨标记点进行修正以避免该因素的影响;主缆成桥线形对温度变化极其敏感,建议增加温度测试断面数量以得到更为精确的温度场分布,据此对主缆成桥线形进行修正;主缆弹性模量影响索股的无应力长度,进而影响主缆成桥线形,需增加钢丝弹性模量的测试精度及抽样比例,得到符合实际主缆弹性模量的检测值,据此修正主缆成桥线形;加劲梁恒载误差对主缆成桥线形的影响很大,主缆架设前需要对钢梁进行称重并测试铺装材料的容重,根据实际重量重新计算主缆成桥线形,并且在铺装层施工时精确控制铺装层厚度。  相似文献   

13.
从成桥和空缆两种状态对柔性人行悬索桥主缆线形进行分析,采用解析方法计算主缆无应力长度,根据吊杆间缆索无应力长度确定索夹位置,并以空缆和成桥状态下索夹坐标进行验证。实际桥梁空缆和成桥状态测量结果显示索夹位置满足设计要求。  相似文献   

14.
悬索桥主缆架设过程分析   总被引:1,自引:0,他引:1  
采用PWS法架设主缆时,基准索股的线形和锚跨索股张拉力是施工时的2个重要参数,为此,提出了2种成桥状态锚跨索股索力的分布模式,通过成桥状态的计算得到各索股精确的无应力长度,然后根据索股架设过程分析,计算基准索股的空缆线形和各索股架设时的张拉力,最后通过算例比较了基准索股线形和成缆线形的差异,并分析索股架设时各索股锚跨张拉力的变化情况。  相似文献   

15.
广西柳州市双拥大桥为主跨430m的双塔单主缆地锚式悬索桥,采用主缆架设和主梁顶推同步施工、分批张拉吊索的施工工艺。该桥具有单根主缆体系横向受力效应的特殊性,体系转换技术难度大,为了解单主缆体系在施工中各种状态下结构的力学响应,采用无应力状态法,利用ANSYS软件建立全桥有限元模型,分析体系转换过程中的吊索和主缆内力、主缆线形、桥塔偏位和主梁支反力等参数的变化规律。结果表明:吊索和主缆的安全系数均满足要求;主缆跨中矢高变化幅度达8.852m;桥塔塔顶偏位在±150mm以内,桥塔变形和受力均较为合理。二期恒载施工后,该桥成桥线形、内力状态与设计预期目标吻合较好,各项实测参数均满足设计和规范要求。  相似文献   

16.
悬索桥初始平衡态因主缆几何非线性不能直接建模得出。文中以节段主缆悬链线方程为基础,建立空间主缆迭代方程。用数值分析法求解主缆线形、内力和无应力长度,得出悬索桥的初始平衡态,为悬索桥成桥线性化分析建立基础。通过优化迭代分析顺序,将主缆初始平衡态求解由多变量简化为单变量迭代分析,使计算过程清晰、收敛速度快、结果精度变高。并利用Fortran 90编制CSASBSC程序,以宝鸡联盟大桥为例验证了该方法的正确性。  相似文献   

17.
大跨径自锚式悬索桥合理成桥状态的确定方法   总被引:18,自引:0,他引:18  
通过对有限位移理论和解析迭代法的分析,对基本参数进行分析研究,提出了确定自锚式悬索桥合理成桥状态的思路和方法。以主缆为切入点,在确定主缆线形及吊索、加劲梁内力的情况下,最终得到主缆和吊杆的无应力长度及施工结构状态。基于上述理论,以某主跨328 m的自锚式悬索桥为例,进行了详细的分析,给出了主缆无应力长度、鞍座预偏量、成桥阶段加劲梁、吊杆的内力,确定了该桥的合理成桥状态。  相似文献   

18.
马普托大桥吊索在国内加工,通过海运到施工现场,周期较长。国内悬索桥吊索索长在主缆架设完成后,通过线形监控数据分析给出下料长度。考虑施工工期制约,通过提高主缆架设精度、索夹安装精度及优化钢箱梁安装工艺,按照理论线形对吊索长度进行下料。其中在主缆架设之前根据箱梁和索夹实际称重、桥面铺装重度试验结果、缆索系统钢丝实测弹模数据,精确计算主缆线形和吊索下料长度。为控制后续施工精度,在基准索股架设期间,分析了塔偏与温度对线形的影响,并根据现场实测温度与塔偏对线形实时调整。主缆架设完成后通过锚跨张力对主缆线形进一步微调,保证实际线形与理论线形相吻合。吊梁之前,根据实测空缆线形精确计算并放样索夹;吊梁过程中,及时进行索鞍顶推,防止索股滑动或桥塔开裂。钢箱梁合龙完成后桥面测量线形与理论线形基本吻合。  相似文献   

19.
冯传宝 《桥梁建设》2020,50(1):99-104
五峰山长江大桥主桥为主跨1092 m的钢桁梁公铁两用悬索桥,加劲梁采用板桁结合钢桁梁,主缆采用预制平行高强钢丝索股结构,直径1.3 m。边跨加劲梁采用支架顶推法施工,中跨加劲梁采用缆载吊机由跨中向两侧对称架设,并在中跨侧靠近桥塔位置处合龙;主缆采用平行钢丝索股法架设。主缆制造时,采用无应力长度法计算各索股的无应力下料长度,并在主缆锚固区每处预留长度为±26 cm的垫板空间;主缆架设时,采用4根索股作为基准索股进行架设线形控制,并将主缆长度误差控制在-18~30 cm,均在误差控制范围内;加劲梁施工时,通过分析各因素对加劲梁线形的影响规律,提出控制二期恒载的措施;加劲梁合龙时,采取中跨钢梁不动、起顶边跨钢梁的合龙控制措施;在加劲梁合龙后加载二期恒载。加劲梁合龙后标高误差为-5^+63 mm,线形控制较好。  相似文献   

20.
悬索桥主缆的下料是影响结构成桥状态的重要参数。文中基于中心索股的长度计算结果,提出了悬索锚固区各索股下料长度的精细算法。采用有限元软件建模,以悬链线索单元模拟主缆,根据结构的成桥状态计算出中心索股主缆的无应力长度;考虑锚固端索股的空间位置构造差异性,采用自编程序对各索股下料长度进行相对于中心索股长度的修正。以一座主跨110m悬索桥为工程依托,对该精细算法进行验证,并给出了悬索锚固区各索股的精确下料长度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号