首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
车道变换是一种复杂的刺激-反应行为,为了准确表示车辆变换车道的决策过程,克服现有模型的不足,重点考虑驾驶员特征和车辆类型对车道变换的影响,并将车道变换过程可划分为3个阶段,即车辆挟道意图的产生、换道可行性分析和换道的执行;引入随机效用理论描述换道需求的产生,建立了基于车道效用选择的自主性车道变换模型,利用视频处理软件获取大量车辆运行轨迹微观数据,采用极大似然估计法对构建的自主性车道变换模型进行了标定;最后,基于换道次数的仿真值与实测值,选取均方根偏差、均方根百分比偏差2个评价指标对车道变换模型的有效性进行了验证,误差指标小于10%,表明建立的自主性车道变换模型可以较好地描述车道变换复杂的运行行为.  相似文献   

2.
给出了多Agent智能系统的协作工作框架模型,设计了基于多Agent的分层递阶交通信号控制系统模型。实现了以多Agent计算为框架的仿真系统。通过实例仿真和分析证明了该方法的有效性和适用性。  相似文献   

3.
针对路面破损条件下,驾驶员为获得更高行驶效益而进行车道变换的现象,以元胞自动机Na Sch模型为基础,引入慢启动规则和换道规则,建立路面破损条件下双车道车辆微观换道模型。以换道需求、车道选择、间隙检测和换道执行4个过程确立仿真流程,对不同路面破损条件下的驾驶员特性、交通流特性和车辆换道特性进行仿真分析。从车辆运行角度对路面破损等级进行划分,依据效用理论计算车辆在不同车道上的行驶效益,建立车辆车道选择模型,并定义换道系数,分析单块路面破损对车辆换道行为的影响。基于驾驶员的行为差异,在仿真过程中将驾驶员分为冒险型、机敏型、谨慎型和迟缓型4类,通过设置仿真参数,对不同类型驾驶员在路面破损条件下的行为特性进行分析。结果表明:换道系数随路面破损等级的增加而不断增大,破损等级越高,车辆在破损路段行驶的效益越低,进一步增大驾驶员进行车道变换的概率,能够很好地模拟路面破损对车辆换道行为产生的影响。冒险型驾驶员在中密度区的换道率最高,随着路面破损程度的增加,车辆换道率和行驶速度方差随之增大,说明破损路面会降低车辆行驶效益,加剧换道行为的产生,同时增加车辆行驶速度的波动性,对交通流正常运行产生一定干扰,不利于行车安全。  相似文献   

4.
采用元胞自动机理论,将车辆在车道缩减区内的运动变化规律表述为元胞自动机的演化规则,标定了元胞长度最大速度和安全距离等参数,通过确定元胞变换的原则,设计缩减区元胞自动机的结构,建立了车道缩减区交通流模拟模型;在此基础上设计并开发了基于元胞自动机车道缩减区的交通仿真软件,并将仿真软件应用于长沙市某道路车道缩减区进行仿真分析。通过对仿真结果与实测数据的对比分析,表明:同样的初始输入条件下,车道缩减区的流量仿真结果与实测值相差10.25%,平均车速相差11.5%,仿真结果的综合准确率达到89.125%;同时,仿真软件能得到路段车辆时空分布图、交通流量时变图、动态追踪车辆轨迹图,从而较为准确地模拟了车道缩减区的拥挤消散过程,可以为通行能力分析和交通改善方案意见提供技术支持。  相似文献   

5.
为解决智能车辆在车道变换过程中的路径规划和路径跟踪问题,首先,利用梯形加速度法设计了车道变换虚拟理想轨迹,该路径规划方法的适应性取决于车道变换时间、横向加速度及变化率等关键变量的约束条件,因而对各关键变量之间的数学关系进行了定量计算,并绘制了不同工况下的车道变换虚拟理想轨迹,用于分析各关键变量对路径规划的影响;其次,建立了线性离散的车辆动力学预测模型,综合分析了车辆模型的控制输入、状态变量以及道路结构参数等约束条件,构建了多约束模型预测控制(MMPC)系统用于车道变换路径跟踪,并基于Hildreth二次规划算法对其目标函数进行了求解,获得前轮转向角控制量,从而保证智能车辆在车道变换过程中的路径跟踪性能及操纵稳定性能;最后,利用MATLAB和Carsim软件对提出的多约束模型预测控制系统进行联合仿真,并构建单约束模型预测控制(SMPC)系统与其进行性能比较,分别对车道变换时间为3 s和6 s时的车道变换性能进行比较分析。结果表明:当车道变换时间为6 s时,2种控制系统都能较好地实现车道变换功能;当车道变换时间为3 s时,与SMPC控制系统相比较,MMPC控制系统能够在有效跟踪期望行驶路径的同时改善车辆的操纵稳定性,从而提高车辆在路径跟踪过程中的主动安全性能。  相似文献   

6.
为完善拥堵交通流仿真中拥堵产生与消散的自发性,研究不同驾驶人群体的换道策略对拥堵产生与消散的影响,通过参考智能驾驶人模型(IDM)建立智能体,构建了基于多智能体系统的3车道交通环境,对交通流仿真方法进行改进,使其可以更加真实地表现出现实环境中拥堵的产生和消散.通过仿真实验,产生不断演化的交通流,得到一系列的仿真数据.利用仿真数据,采用重复博弈的理论分析驾驶员群体的策略对道路通行能力的影响.仿真及推理结果表明,在不发生事故的前提下,驾驶人群体采取占优的换道策略最多可以提高所有车辆7%的平均车速;理性的驾驶员换道策略的调整的最终结果会使道路通行能力降低.   相似文献   

7.
面向多智能体的出行前信息下通勤者出行行为研究   总被引:1,自引:0,他引:1  
采用面向多智能体的建模与仿真方法,对先进的交通信息系统(ATIS)提供的出行前信息下通勤者出行行为进行了研究.首先,基于贝叶斯理论,建立了在出行前信息与以往出行经验作用下,通勤者出行时间感知动态更新模型;进而以信念-愿望-意图(BDI)模型为基础,将每个通勤者一车辆单元刻画为一个具有双层结构的智能体,并采用面向多智能体语言AgentSpeak(L)刻画了智能体的出行行为决策机制;最后,采用面向多智能体编程平台Jason与微观交通仿真平台Paramics相结合的方式进行了相应的仿真试验.结果表明:贝叶斯理论可以较好地解释驾驶员(尤其是通勤者)出行行为动态特性,同时验证了多智能体技术与微观交通仿真技术的结合在驾驶员行为分析中应用的有效性,为驾驶员行为分析提供了新思路.  相似文献   

8.
改进Hough变换方法在车道检测中的应用   总被引:1,自引:0,他引:1  
智能车辆是智能交通系统诸多技术的载体。在智能车辆运用机器视觉技术感知外界环境的过程中,Hough变换作为一种应用广泛的图像分割技术,可用来实现车道检测。文中在介绍Hough变换的基础上分析了运用Hough变换进行车道检测的特点,并对使用改进Hough变换检测车道做了进一步讨论。  相似文献   

9.
将智能车辆的自动驾驶运动过程分解为车道保持、车辆跟随、车道变换和制动避撞4种典型驾驶行为,基于有限状态机方法建立各驾驶行为间的逻辑关系及状态切换过程,同时,构建了面向自动驾驶的虚拟危险势能场,并对其结构关键参数和驾驶行为决策触发阈值进行分析。利用MATLAB/CarSim软件对不同道路工况下的自动驾驶行为决策过程进行联合仿真,并利用比例车辆模型和机器视觉系统对提出的方法进行试验验证。仿真和试验结果表明,虚拟危险势能场与有限状态机相结合的方法能够满足智能车辆的驾驶行为决策需求并实现主要的自动驾驶功能。  相似文献   

10.
驾驶员车道变换视点转移模型及其参数标定   总被引:1,自引:0,他引:1  
为了获取驾驶员车道变换行程中的视点转移特性,构建视点转移模型,解决驾驶员行为监控设备布设缺乏依据的难题,采用眼动仪和人工记录的方式,分别以轿车和公交车驾驶员为研究样本,获取了车道变换行为过程中驾驶员视点停留时间和视点位置转移特性数据,给出驾驶员的眼动停留时间均值和分布规律,基于外界的交通运行环境,根据驾驶员对外界信息的获取程度,考虑驾驶员、车辆、道路、环境等影响因素,设定其符合泊松分布,将驾驶行为分为决策阶段和执行阶段,给出了基于6个模块的流程结构,构建基于信息满意度的视点位置转移模型并标定了模型参数。  相似文献   

11.
提高人类驾驶人的接受度是自动驾驶汽车未来的重要方向,而深度强化学习是其发展的一项关键技术。为了解决人机混驾混合交通流下的换道决策问题,利用深度强化学习算法TD3(Twin Delayed Deep Deterministic Policy Gradient)实现自动驾驶汽车的自主换道行为。首先介绍基于马尔科夫决策过程的强化学习的理论框架,其次基于来自真实工况的NGSIM数据集中的驾驶数据,通过自动驾驶模拟器NGSIM-ENV搭建单向6车道、交通拥挤程度适中的仿真场景,非自动驾驶车辆按照数据集中驾驶人行车数据行驶。针对连续动作空间下的自动驾驶换道决策,采用改进的深度强化学习算法TD3构建换道模型控制自动驾驶汽车的换道驾驶行为。在所提出的TD3换道模型中,构建决策所需周围环境及自车信息的状态空间、包含受控汽车加速度和航向角的动作空间,同时综合考虑安全性、行车效率和舒适性等因素设计强化学习的奖励函数。最终在NGSIM-ENV仿真平台上,将基于TD3算法控制的自动驾驶汽车换道行为与人类驾驶人行车数据进行比较。研究结果表明:基于TD3算法控制的车辆其平均行驶速度比人类驾驶人的平均行车速度高4.8%,在安全性以及舒适性上也有一定的提升;试验结果验证了训练完成后TD3换道模型的有效性,其能够在复杂交通环境下自主实现安全、舒适、流畅的换道行为。  相似文献   

12.
为了探索当前有限数据条件下面临的无限交通场景问题,提出车路协同条件下基于深度强化学习智能网联汽车决策模型。利用Actor-Critic机制,以highway-env为数据来源,抽取144 h交通数据作为训练数据并进行验证,分析了智能网联汽车在不同车道数条件下的驾驶行为。结果显示,本模型汽车行程时间减少20%以上,碰撞概率减少25%以上,换道轨迹可以通过动力学跟踪。  相似文献   

13.
基于自动换道控制技术中融合个性化驾驶人风格的研究,建立考虑驾驶人风格的车辆换道轨迹规划及控制模型以提高换道规划控制模型对不同风格驾驶人的适用性,在保证安全性的基础上进一步满足驾驶人的个性化需求。首先通过问卷调查的方式采集得到了212份驾驶人风格量表数据,采用主成分分析法和K均值(K-means)聚类分析法将驾驶人按驾驶风格分为激进型、普通型和谨慎型,并通过驾驶模拟器试验采集不同风格驾驶人分别在自车道前车、目标车道前车和目标车道后车影响下的换道行为数据。然后对椭圆车辆模型进行改进,以描述不同风格驾驶人的行车安全区域,并据此构建3种典型工况下不同风格驾驶人的换道最小安全距离模型,结合驾驶舒适性约束、车辆几何位置约束以及不同风格驾驶人的换道行为数据,以换道纵向位移最短为目标,实现适应驾驶人风格的换道轨迹规划。最后以基于预瞄的路径跟踪模型作为前馈量,设计基于动力学的线性二次型最优(LQR)反馈控制器,通过调节控制权重矩阵实现3种工况下不同驾驶人风格的换道轨迹跟踪。PreScan和MATLAB/Simulink联合仿真结果表明:所设计的考虑驾驶人风格的换道轨迹规划及跟踪控制模型能够实现不同驾驶风格的自动换道轨迹规划及跟踪控制,可满足驾驶人个性化换道需求。  相似文献   

14.
为了正确刻画智能网联环境下的车辆换道行为,提出基于BP神经网络的车辆换道决策模型.分析了交通流中车辆换道行为,以HighD自然驾驶数据集为数据来源,筛选出1 900组车辆换道和未换道信息作为模型的训练与验证,利用高斯滤波方法拟合目标车辆换道轨迹和横向位移轨迹,选择影响车辆换道决策的7个参数作为模型输入,建立BP神经网络...  相似文献   

15.
道路系统中的人机混驾交通环境是指人工驾驶车辆与自动驾驶车辆混合运行的交通环境,其中换道行为建模是人机混驾环境下无人驾驶车辆行为研究的热点。基于深度学习理论,构建人机混驾环境下基于长短期记忆神经网络的无人驾驶车辆换道行为模型(Long-short-term-memory-based Autonomous Vehicles Lane Changing,LSTM-LC)。通过研究人工驾驶车辆在换道过程中与周边车辆的相互作用,对换道行为影响因素进行分析;同时,为了提升模型的迁移性,引入道路横向偏移量信息。结合LSTM神经网络的输入要求,使用美国公开交通数据集Next Generation SIMulation(NGSIM)构建换道行为样本库。针对LSTM-LC模型,以均方差MSE作为损失函数,使用RMSprop优化方法进行训练,对LSTM网络结构、历史序列长度N及训练样本量3个重要参数进行标定。最后,针对道路横向偏移量M对LSTM-LC模型性能的影响进行对比试验。研究结果表明:相比GRU-LC模型,LSTM-LC模型对换道行为的表征更准确,在模型的精度和迁移性上有着显著的提升;GRU-LC模型的均方差为4.64 m2,迁移性均方差为119.82 m2,而LSTM-LC模型的均方差为3.18 m2,迁移性均方差为79.58 m2,分别优化了31.5%和39.71%;通过引入道路横向偏移量M,可将LSTM-LC模型精度和迁移性提升约10%,且模型稳定性更强。  相似文献   

16.
因交织区的强制换道存在紧迫性, 车辆换道行为在交织区后半段会出现因换道意愿强烈而产生的激进换道行为, 这种微观的换道行为将给交通流带来一定影响; 在人机混驾情形下, 不同类型换道切换控制模型同样可能影响交织区通行能力。在分析人机混驾交通流交织区换道行为特性的基础上, 将换道类型分为保守型换道和激进型换道; 在可接受安全间隙模型的基础上结合自动驾驶车辆间的协同行为, 构建自动驾驶车辆在保守状态下的协同换道模型; 以及在激进型状态下考虑目标车道后车类型影响下, 构建激进型换道模型。通过分析津保立交桥实地调研轨迹数据和NGSIM中US-101交织路段轨迹数据, 分别拟合了保守型、激进型换道模型切换点分布函数; 考虑不同车辆驾驶行为特性及其相互作用, 提出人机混驾条件下换道模型切换控制逻辑决策。以SUMO仿真软件搭建实验平台, 考虑人工驾驶车辆换道模型切换点分布特性, 以优化最大流率、交织区整体车辆运行速度、换道车辆速度等为目标, 确定不同自动驾驶车辆渗透率下自动驾驶车辆的最佳保守型-激进型换道模型切换点。仿真结果显示: 在交织区长度为250 m, 自动驾驶渗透率分别为0.2, 0.5, 0.8时, 自动驾驶换道模型切换点分别在180, 80, 50 m处达到最佳, 即随着自动驾驶渗透率的提高, 换道切换点最佳位置将向交织区入口处逐渐移动, 且在自动驾驶渗透率较低时这种换道切换点的变化较为明显; 在较高渗透率下, 由于协同换道出现频率增高, 自动驾驶强制性换道行为比例降低, 换道模型切换点对交织区通行能力的影响逐渐变小。本项研究对人机混驾条件下高速公路交织区自动驾驶车辆的换道控制提供决策依据   相似文献   

17.
王伟 《交通与计算机》2010,28(2):52-56,64
以探索铁路枢纽客运组织方案的优化为目标,基于复杂系统理论中的多主体模拟方法,结合元胞自动机与多智能体各自的优势,将旅客行为与运输组织部门决策相结合,环境因素由元胞自动机表达,模型涉及到运输组织部门、旅客等不同类型的智能体,个体通过资源和环境的相互作用和与其他个体的交流协商来对周围环境的变化作出相应的反应。通过模拟运输组织部门复杂的决策过程,提出基于复杂适应系统理论的客运站客运组织优化的研究思路、基本框架和优化方法,探讨系统中各个智能体的结构及其竞合关系,设计基于多智能体的进化优化算法;最后以广州站高峰期客运组织优化为例进行了实证分析。  相似文献   

18.
针对非机动车交通流中传统元胞自动机模型主观定义时空参数,粗略划分自行车虚拟车道,导致仿真精度偏差的问题,构建了精细元胞自动机模型.基于NaSch模型的更新规则,考虑二维空间内异质自行车间的错位冲突及动态换道行为特征,细化了模型网格密度及模拟时间步长.产生换道需求的自行车可以换至满足安全侧向换道条件及前行需求条件的横向位...  相似文献   

19.
为了研究高速公路小型车的换道行为特性,采用2台无人机同时在200 m的高空对交通流进行拍摄,获取交通流运行状态。构建拍摄路段的高精度地图,获取每一时刻车辆的精确运行状态数据,在此基础上对2个视频进行拼接,最终获得车道位置、速度、车辆编号等8项关键指标,共提取换道行为1 520条,筛选后得到完整的自由换道数据942条。采用车辆轨迹是否持续偏移作为判断换道行为起终点的依据,在此基础上分析换道的时间长度、空间长度、与周边车辆的相互状态以及换道行为的安全性等16个特征参数。得出平均换道时间长度为6.09 s,平均换道空间距离为148.08 m,换道时间与空间长度均符合对数正态分布。换道车辆与目标车道后方车辆的平均距离最小(34.29 m),其相对距离在10 m以内的占28.24%,驾驶人为了加快行驶,在与目标车道后方车辆相对距离较小的情况下,依然采取换道措施。与正前方车辆的相对速度差最大,平均值为10.2 km·h-1,并且在83%的情况下,本车的速度大于前车,说明车辆自由换道是由于前方车辆行驶速度较慢所引起。采用TTC,MTC分别对换道起始时刻的安全性进行分析,并将安全状态划分为4种类型:严重-紧急状态、严重-非紧急状态、非严重-紧急状态、非严重-非紧急状态。其中严重-非紧急,非严重-非紧急这2种状态占比最高。该研究成果对了解中国驾驶人在高速公路上的换道行为特性,以及对建立适用于中国实际交通环境特征的换道行为模型具有一定参考意义。  相似文献   

20.
城市交通区域智能协调控制研究   总被引:1,自引:1,他引:1  
针对我国城市混合交通状态复杂多变,随机性大,具有分布式交通区域控制等特点,利用多智能体技术和融合技术对其进行研究,提出了基于多智能体技术和融合技术的城市交通区域控制系统框架和智能体的内部结构,并采用博弈再励学习方法进行优化控制和区域协调,实现城市交通控制区域智能协调和全局优化,最后通过仿真分析说明算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号