首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
利用有限元软件计算无缝道岔的温度力   总被引:4,自引:0,他引:4  
利用有限元软件ANSYS,以12号无缝道岔为例建立道岔计算模型,并与现有的无缝道岔软件WFDC结果进行比较,结果较为一致,认为利用ANSYS对无缝道岔的受力和变形情况进行分析是可行的。  相似文献   

2.
无缝道岔温度力特性及实例计算   总被引:3,自引:0,他引:3  
无缝道岔是跨区间无缝线路的重要组成部分,能显著提高列车运动速度和平稳性。无缝道岔温度力的特点在于基本轨要承受附加温度力的作用,岔内钢轨受力和位移状况复杂。为了保证安全,铺设无缝道岔应进行强度和稳定性检算。  相似文献   

3.
连续梁桥上无缝道岔温度力与变形影响因素分析   总被引:2,自引:1,他引:1  
研究目的:桥上无缝道岔是跨区间无缝线路的一项关键技术。分析各种因素对道岔和桥梁的受力与变形的影响,总结出连续梁桥上无缝道岔受力与变形规律,是关系到客运专线运营安全的重要问题。研究方法:通过建立连续梁桥上无缝道岔的有限元计算模型,利用Ansys软件对连续梁桥上无缝道岔进行力学计算并作参数影响分析。研究结果:道岔布置位置和桥墩支座布置形式对系统受力和变形影响较大;增大岔区内道床纵向阻力和扣件纵向阻力,有利于控制道岔的位移;连续梁固定墩刚度增加能有效控制道岔各主要位移,同时能减小基本轨最大附加力;轨温变化幅度对系统受力和变形的影响非常显著。研究结论:道岔应避免布置在梁的端部并且尽量让道岔导轨与梁体反向伸缩;合理设计锁定轨温能有效地改善系统受力状况。  相似文献   

4.
用有限元法分析无缝道岔的受力与变形   总被引:7,自引:0,他引:7  
为建立能客观反映无缝道岔实际受力情况的计算分析模型,在吸收国内研究成果的基础上,基于有限单元法,建立了无缝道岔钢轨纵向力及位移计算力学模型,并对我国12号固定型辙叉无缝道岔、大秦线12号可动心轨辙叉无缝道岔及秦沈客运专线38号无缝道岔进行计算,计算结果分别与无缝道岔两轨相互作用理论计算值和现场测试数据基本吻合。以两组合无缝道岔为例,据此模型对不同组合型式无缝道岔的组合效应进行初步研究。  相似文献   

5.
30号无缝道岔钢轨温度力与位移计算分析   总被引:6,自引:3,他引:3  
建立了能形象直观反映无缝道岔实际工作状况的力学模型,并以此研究了我国刚研制的30号高速道岔无缝化后主要设计参数对钢轨的温度力与位移的影响规律,得出的结论可直接指导30号无缝道岔的设计。  相似文献   

6.
采用有限元分析的方法,建立了计算简支梁桥上无缝道岔温度力与位移的有限元力学模型.计算了桥上无缝道岔的受力与变形,并分析了桥梁结构对无缝道岔的影响.研究结果对桥上无缝道岔的设计有一定的指导意义.  相似文献   

7.
研究目的:分析无砟轨道基础上无缝道岔的纵向力传递机理,建立无砟无缝道岔计算模型,采用有限单元法计算了无砟无缝道岔受力及变形,并与有砟轨道无缝道岔进行了对比分析,为无砟无缝道岔设计提供参考依据。研究结果:无砟轨道基础上无缝道岔的纵向力传递机理、温度力和位移分布规律与有砟轨道无缝道岔明显不同。  相似文献   

8.
基于有限单元法的无缝道岔计算理论 ,分析在不同轨温变化情况下无缝道岔中钢轨的受力与变形 ,比较不同号码的可动心轨道岔、固定辙叉无缝道岔的受力与变形特点。探讨道床阻力、扣件阻力、间隔铁阻力以及限位器子母块间隙对钢轨受力与变形的影响。  相似文献   

9.
无缝道岔交叉渡线有限元分析   总被引:1,自引:1,他引:0  
基于有限单元法的无缝道岔设计计算理论,分析在不同轨温变化情况下无缝道岔交叉渡线中钢轨和传力部件的受力与变形。探讨设置不同辙跟类型及数量、设置不同扣件阻力和道床阻力对钢轨和传力部件受力与变形的影响。  相似文献   

10.
无缝道岔的理论与试验研究   总被引:20,自引:1,他引:20  
无缝道岔是跨区间无缝线的关键技术。文章基于当量参数、非线性理论和力图叠加原理,提出了一种新的无缝道岔计算理论,并进行了现场试验研究。按该理论设计、铺设的无缝道岔运营状况良好,现场测试数据与理论计算值基本吻合,验证了该无缝道岔计算理论的正确和计算参数的取值合理。  相似文献   

11.
无缝线路稳定性分析有限元模型   总被引:8,自引:1,他引:7  
利用有限元法建立包含钢轨、扣件、轨枕和道床阻力为一体的轨道框架模型。研究在温度力作用下无缝线路的臌曲失稳问题。推导相应的数值计算公式并编制了计算程序。轨道框架模型由4种单元组成:用考虑钢轨非线性变形的平面梁单元代表钢轨;无几何尺寸的两结点弹簧单元模拟钢轨扣件;弹性基础上的普通平面梁单元表示轨枕;弹簧单元模拟道床的横向、纵向阻力,并考虑了道床阻力的非线性特性。运用该模型,分析道床横向阻力、轨枕失效、曲线半径和线路初始弯曲对无缝线路稳定性的影响,得到不同工况下钢轨横向位移-温度曲线、钢轨内应力分布及钢轨和轨枕的横向变形分布曲线。  相似文献   

12.
对典型案例的桥上咽喉区无缝道岔群的温度力、道岔部件相对位移和传力件的剪力进行了计算,并与普通桥上无缝线路的温度力进行了对比分析。计算结果表明:桥上无缝道岔较一般区间桥上无缝线路钢轨附加力明显增大,桥上无缝道岔设计应同时兼顾道岔与桥梁孔跨布置;典型案例中的道岔尖轨、心轨位移及限位装置的结构强度均可满足其限值要求。  相似文献   

13.
运用ANSYS软件,建立铺设护轨的桥上无缝线路有限元模型,研究护轨中集聚不同温度力对桥上无缝线路稳定性的影响。结果表明:对于采用50kg·m-1钢轨铺设护轨半径大于1 200m和采用60kg·m-1钢轨铺设护轨半径大于800m的曲线线路,当护轨中集聚小于20℃的温度力时,铺设护轨可提高桥上无缝线路的稳定性,而对于采用50kg·m-1钢轨铺设护轨半径小于1 200m和采用60kg·m-1钢轨铺设护轨半径小于800m的曲线线路,当护轨中集聚大于20℃的温度力时,铺设护轨则会不同程度地降低桥上曲线无缝线路的稳定性,且半径越小,线路稳定性的降低越明显;对于桥上直线无缝线路,采用50或60kg·m-1钢轨铺设护轨后,当护轨中集聚小于30℃的温度力时,桥上无缝线路稳定性均可得到提高,且护轨温度力越小其稳定性提高程度越高。通过减小护轨中的温度力,可减少伸缩调节器的使用,提高桥上无缝线路铺设的温度跨度。  相似文献   

14.
辙叉跟端间隔铁的设置一方面需满足纵向温度力传递的要求,另一方面也要保证心轨的线型在温度力作用下不发生改变,保证行车安全。根据双肢弹性可弯心轨辙叉的结构形式,建立有限元模型,研究心轨跟端传力结构不同时心轨在温度力作用下的变形。结果表明:在大号码无缝道岔中,应在心轨与翼轨以及两心轨间设置长大间隔铁;仅在心轨与翼轨间设置间隔铁时,心轨在纵向力作用下会产生较大的方向不平顺,通过在心轨与心轨间设置间隔铁,可以明显改善纵向力作用下的心轨方向不平顺;对于减小由于温度力引起的心轨间相互错动、心轨方向不平顺,设置长大间隔铁较设置多个小间隔铁更为有利,设计中应尽量采用长大间隔铁。  相似文献   

15.
根据最小势能原理和变分法,定量研究组合梁界面滑移对构件性能的影响。滑移增大结构曲率,降低构件刚度,增加附加弯矩,从而引起挠度增大。建立考虑滑移效应和剪切变形双重作用下挠度和滑移控制微分方程。求得集中荷载条件下挠度和滑移的解析表达式。在解析表达式的基础上推导考虑双重效应的组合梁单元刚度矩阵。  相似文献   

16.
利用ANSYS的参数化设计语言APDL和用户界面设计语言UIDL,以铁路无缝道岔群为例,通过二次开发实现了无缝道岔参数输入,完成无缝道岔群钢轨温度力和位移的有限元计算分析,便于分析过程。  相似文献   

17.
无缝线路纵向温度力作用下的动力特性分析   总被引:1,自引:0,他引:1  
通过建立无缝线路有限元动力计算模型,运用数值分析方法深入分析了无缝线路钢轨的自振频率与温度变化引起的纵向应力之间的关系,为无缝线路钢轨纵向温度力的测试提供一种可行的思路和方法.模型不仅包括钢轨模型、轨下弹性垫板及扣件模型、轨枕模型,还考虑了道床模型及路基模型,并分析了钢轨磨耗以及轨下基础刚度等因素对钢轨竖向振动特性与纵...  相似文献   

18.
铁路无缝道岔计算方法的研究   总被引:4,自引:1,他引:3  
研究无缝道岔各部件的受力与变形规律,将轨枕视为弹性地基上的有限长梁,用基于弹性理论的戈尔布诺夫 波沙多夫方法对轨枕进行受力分析,建立了扣件阻力和轨枕变形曲线的函数关系;在继承现有试验成果的基础上,通过假设钢轨纵向力函数,计算了无缝道岔结构各部分的能量;再利用广义变分原理建立了结构的非线性平衡方程组;最后用最速下降法求解该方程组;编制了实用的计算程序。以秦沈客运专线38号无缝道岔为例,计算轨温变化时,其钢轨纵向力及位移等的分布规律。  相似文献   

19.
钢轨接头螺栓的有限元应力集中分析   总被引:4,自引:0,他引:4  
应用有限元接触分析方法 ,研究钢轨螺栓螺纹根部的应力集中。通过优化螺栓螺纹根部圆角半径和螺母结构、改变螺纹根部直径的方法 ,缓解螺纹根部的应力集中 ,改善应力分布 ,实现提高螺栓疲劳强度的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号