首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
南昆铁路乐善村二号隧道设计概述   总被引:1,自引:0,他引:1  
乐善村二号隧道,为双线铁路隧道,全长274m,是铁道部隧道抗震试验工点,具有断面大,埋深浅,地层软、裂度高四个不利条件。设计采用了新结构、新技术、新材料、新工艺,其中薄壁柔性抗震衬砌,钢纤维钢筋混凝土衬砌材料,设置环向抗震缝,斜切伸出式洞口,曲墙式车站明洞,中壁法施工技术均为国内铁道隧道首次应用。  相似文献   

2.
吴全中 《隧道建设》2006,26(3):40-43
盾构法适宜在较均一的软土、软岩地层或砂层及其互层的地层中掘进,但在软硬不均、软硬交互且岩石强度差异大的地层中应用盾构法修建城市地铁隧道就复杂得多。以广州地铁三号线盾构区间工程为实例,介绍盾构法隧道长距离硬岩地层段采用钻爆法开挖管片衬砌施工技术。  相似文献   

3.
为明确松散砂卵石地层隧道支护体系力学特性,以青海循隆高速公路穿越公伯峡砂卵石地层隧道为工程实例,研究了砂卵石隧道初期支护刚度、强度的影响特征及二次衬砌施作时机的力学影响特点。通过研究隧道支护体系的力学行为,提出砂卵石隧道初期支护建议参数,明确了支护拱顶沉降、衬砌应力与二次衬砌施作时机的关系,可为砂卵石地层隧道及类似工程的支护设计提供参考。  相似文献   

4.
列车荷载作用下衬砌长期渗漏会显著影响软土盾构隧道周围土体的固结沉降,对邻近环境和地铁的安全运营造成不良影响。针对盾构隧道周围土体固结沉降的既有理论研究一般多考虑衬砌不透水条件,较少考虑衬砌渗漏水及列车荷载耦合作用对于地层固结沉降的影响。引入隧道衬砌半渗透边界和列车三角形循环时效荷载,基于Terzaghi-Rendulic固结理论,采用Boltzmann三元件模型模拟土体流变效应,推导了列车荷载作用下黏弹性地层盾构隧道渗漏水诱发的土体超孔隙水压力消散和地表固结沉降的复变函数解析表达式,并与6个工程实测数据进行对比,验证了所给出解析解的正确性与适用性。此外,通过参数分析讨论了衬砌-土体渗透比和列车荷载参数对土体固结沉降的影响。结果表明:衬砌-土体渗透比是影响盾构扰动地层固结快慢的主要影响因素,衬砌-土体渗透比越大,固结完成时间越早;列车荷载作用下,早期固结沉降速率相较于不考虑列车荷载时会有较明显的增加,但在列车荷载当量增加后,固结沉降速率的增长有所放缓,且其增量与衬砌-土体渗透比密切相关,衬砌-土体渗透比越大,沉降增加量则越大;隧道衬砌可以视为扰动地层的排水边界,其加速了土体固结沉降,而列车荷载与衬砌半渗透性耦合,进一步改变了土体固结沉降形态。  相似文献   

5.
甘肃庆阳新近纪上新统红层由于特殊的成因,其工程力学特性与南方红黏土有较大差别。为系统研究穿越该地层大断面隧道支护结构的受力特征,以银西高铁庆阳隧道为研究对象,通过现场实测和有限元模拟获得衬砌结构内力、围岩压力、5~10 m围岩深部位移、支护收敛变形的时空分布特性,对现场监测结果体现的衬砌-围岩复合结构受力状态产生的原因进行分析,并利用ABAQUS软件模拟隧道开挖过程以对比验证衬砌结构受力规律,得出该地层隧道地应力、围岩压力、衬砌结构内力特征。研究结果表明: 1)围岩各项指标属于极硬土-极软岩临界范畴。2)该地层衬砌结构围岩质量较好,水平地应力为垂直地应力的2倍,可优化为Ⅲ-Ⅳ级围岩进行设计的同时增大侧压力系数。3)未闭合的初期支护不能有效限制围岩变形,可通过设置临时仰拱等措施改善受力状态;数值模拟结果与现场实测规律相符。4)该地层变形剧烈区为洞周开挖界限向围岩内1倍洞径范围,变形区域主要集中在拱顶;延迟开挖仰拱可有效减少仰拱内衬砌结构受力。  相似文献   

6.
以高平至陵川高速公路郭家川2号煤系地层隧道为依托工程,利用ANSYS对衬砌结构进行了数值模拟,研究了煤系地层公路隧道衬砌结构的应力应变特征和变形规律。研究表明:煤系地层的地质构造和节理特征对隧道衬砌结构受力和变形有重要影响;隧道侧压力系数对衬砌结构的内力影响很大;衬砌结构拱脚和拱顶处弯矩很大,应力集中系数大,拱脚和拱顶处应作为结构安全性监控、隧道设计与施工控制性部位。  相似文献   

7.
高地应力软岩隧道衬砌裂损重新施作段结构安全性分析   总被引:1,自引:0,他引:1  
马召林  焦雷  赵爽  黄明利 《隧道建设》2018,38(9):1489-1496
为研究高地应力软岩隧道衬砌裂损重新施作段结构的安全性,依托木寨岭隧道衬砌裂损段,通过现场监测和数值模拟的方法,分析高地应力软岩隧道衬砌裂损重新施作段结构变形受力特征,进而分析结构的安全性。现场监测结果表明: 衬砌裂损重新施作后,前3层支护几乎承担了所有的围岩压力和变形,通过层层支护、分层抵抗的方法来逐渐降低衬砌受力,保证衬砌结构的安全。通过数值计算对比分析衬砌重新施作前后的隧道受力变形状态,其中重新施作后衬砌各位置混凝土应力和钢筋应力增长趋势均不明显,计算得到衬砌裂损重新施作段结构安全系数均处于3.3~8.1,各位置安全系数均大于规范中的要求值,说明结构处于安全状态。  相似文献   

8.
张冬梅  张博恺  刘志刚 《隧道建设》2015,35(11):1121-1126
经验表明,在软土、浅埋大断面隧道开挖方案中,加固方式对衬砌结构受力、隧道收敛变形和地层位移影响显著。港珠澳大桥珠海连接线拱北隧道具有隧道埋深浅、结构断面尺寸大、地质条件差、地理位置政治敏感性强等特点。以该隧道为背景,利用数值模拟方法,分析大直径钢管管幕冻结法施工和隧道开挖方案对衬砌结构受力和地层变形的影响。经分析发现:不同开挖方案对衬砌受力、变形和地层位移的影响显著;在分台阶开挖过程中,台阶越小,引起的衬砌受力、隧道收敛变形和地层位移越小;管幕冻结对改善衬砌受力和地层位移效果显著,根据管幕冻土受力特性对其关键受力部位提出建议。  相似文献   

9.
隧道施工过程中经常会遇到各种复杂的地质条件,如围岩不均匀风化产生的上软下硬地层、上硬下软地层、左软右硬地层、左硬右软地层,这类地层的存在给隧道的施工带来了很多不利影响,也是导致隧道塌方的重要原因之一。本文以广东仁化五里亭隧道塌方为依托,通过数值模拟分析隧道塌方原因,提出处治措施,为以后类似施工提供参考。  相似文献   

10.
《公路》2017,(11)
针对隧道中先浇筑主洞衬砌结构后进行横洞开挖的施工工序中横洞施工对主洞衬砌结构形变破坏的影响,以某软岩隧道为工程依托,通过隧道衬砌应力监测、初支结构形变监测以及横洞施工时主洞衬砌结构形变破坏的监测,对深埋软岩隧道横洞施工对主洞衬砌结构形变破坏影响进行了研究与分析。研究表明,隧道交叉段围岩形变量较大,围岩形变速率较大,最大水平收敛位移达到537mm。最大拱顶下沉值达到346.1mm,围岩形变速率平均值达到9.93mm/d;依托工程隧道衬砌为主要受力结构,受力随着时间呈逐渐增大趋势。局部位置处形成应力集中区,应力值达到1.13 MPa和1.03 MPa。衬砌混凝土在左拱脚与右拱腰位置处呈现受压状态,最大压应力值为0.889 MPa。拱顶呈受拉状态,最大拉应力值为6.45 MPa。深埋软岩隧道中的横洞施工对主洞衬砌结构的形变破损有着较为严重的影响,影响范围达到140m。在此软岩隧道中不宜采用先浇筑主洞衬砌结构后对横洞进行爆破开挖的施工工法。  相似文献   

11.
二次衬砌施作时机一直是高地应力软岩隧道工程设计与施工过程中面临的关键技术难题之一。为此,依托在建成都-兰州铁路典型千枚岩隧道工程,基于隧道变形长期监测结果,分析高地应力软岩隧道变形时程特点,考虑软岩隧道荷载特点,确定了二次衬砌施作时机原则;考虑隧道测量丢失变形,提出软岩隧道第1稳定阶段变形量确定方法;通过现场实测变形数据统计回归,基于一定保证率确定不同大变形等级和不同断面下的软岩隧道二次衬砌施作时机,并进行现场试验验证。研究结果表明:适当刚度的初期支护可以实现高地应力软岩隧道前期变形稳定,但无法保持围岩长期稳定,二次衬砌应该在初期支护变形达到第1稳定阶段后施作,既可以减少二次衬砌荷载,又可以控制围岩变形;采用指数函数拟合软岩隧道变形具有较好的相关性,但参数差异性较大,同时在确定隧道第1稳定阶段变形量时应考虑测量丢失变形;轻微、中等大变形段拱顶下沉变形速率小于0.1~0.2mm·d-1,边墙收敛速率小于0.5mm·d-1,严重、极严重大变形段拱顶下沉变形速率小于0.4mm·d-1,边墙收敛小于0.6mm·d-1,即可进行二次衬砌施作;轻微大变形段、中等大变形段和严重大变形段分别在隧道开挖45~55 d,55~60 d和80~90 d后达到二次衬砌施作标准。  相似文献   

12.
《中外公路》2021,41(3):241-245
基于广东地区某三车道高速公路隧道浅埋偏压段衬砌裂损病害检测数据,采用数理统计方法对衬砌裂损病害进行统计分析。结合隧道施工及检测情况,对浅埋偏压段隧道结构受力情况分别采用荷载-结构法和地层-结构法进行了数值反演计算。计算结果表明:对于隧道的浅埋偏压段,地层-结构法得到的衬砌受力情况更加吻合隧道衬砌裂损状态,受隧道施工及地形偏压的影响,浅埋侧隧道拱部围岩塑性应变和围岩压力大于深埋侧,因衬砌钢筋保护层较厚,导致钢筋无法有效约束裂缝发展,进而造成浅埋侧衬砌大面积开裂。  相似文献   

13.
本文针对软岩地区连拱隧道,开展了公路连拱隧道模型试验研究。通过对连拱隧道的开挖、衬砌过程中围岩压力的变化进行了分析,揭示了围岩压力的松弛范围,探讨了连拱隧道施工过程各工序的相互影响,得出了施作衬砌后与围岩压力回升量相互影响的关系。  相似文献   

14.
朱卫东 《隧道建设》2017,37(11):1462-1468
为研究超大断面隧道在软岩地层中开挖施工引起的变形情况,基于铁路设计规范和围岩分级标准对王岗山隧道穿越岩层进行围岩亚分级,通过考虑开挖方向、复杂围岩条件及断层破碎带的影响,利用ABAQUS有限元软件开展三维施工过程模拟,获得三台阶法开挖后的隧道衬砌及围岩受力及变形特征。在此基础上,提出采用更适宜控制变形的双侧壁导坑开挖法,并对其控制效果进行验证。最后,分析影响隧道衬砌和围岩变形的相关因素,得到利于控制变形过大问题的最优进尺设置参数及初期/临时支护形式。数值计算结果表明:1)双侧壁导坑法能够有效降低隧道开挖引起的衬砌及围岩变形;2)锚杆在复杂地层中能够发挥重要作用;3)循环进尺和初期支护强度均对施工引起的变形存在影响,使用新型复合管片临时支护有利于控制隧道衬砌及围岩变形;4)断层破碎带是王岗山隧道施工必须重视的关键部位,除采用合理的开挖工法外,还应辅以其他降低围岩扰动进而控制开挖变形的有效措施。  相似文献   

15.
极高地应力软岩隧道双层支护技术   总被引:2,自引:0,他引:2  
司剑钧 《隧道建设》2014,34(7):685-690
兰渝铁路两水隧道洞身主要通过炭质千枚岩软岩地层,隧道为极高地应力状态,最大水平主应力值为6.5~11.3 MPa。施工前期,隧道初期支护结构变形较大,部分钢拱架扭曲、断裂,支护结构失稳,初期支护结构侵入衬砌净空,拆换拱情况频繁发生,局部地段二次衬砌开裂。针对前期施工中出现的问题,分别开展双层初期支护和双层衬砌试验,对试验段初期支护变形、围岩压力、接触压力、钢架应力、钢筋应力、混凝土应力等进行现场试验研究,掌握试验段设计及施工参数条件下,隧道支护和衬砌结构受力和变形规律。主要研究结果如下:1)双层初期支护变形相对较小,喷混凝土应力、钢架应力、二次衬砌混凝土应力及二次衬砌钢筋应力均未超过材料的容许应力,工作状态良好;2)双层初期支护可减少绑扎钢筋的工序,不需要再另增衬砌台车,在工序组织上更加便利,工效性相对较高。  相似文献   

16.
甘肃庆阳新近纪上新统红层由于特殊的成因,其工程力学特性与南方红黏土有较大差别。为系统研究穿越该地层大断面隧道支护结构的受力特征,以银西高铁庆阳隧道为研究对象,通过现场实测和有限元模拟获得衬砌结构内力、围岩压力、5~10 m围岩深部位移、支护收敛变形的时空分布特性,对现场监测结果体现的衬砌-围岩复合结构受力状态产生的原因进行分析,并利用ABAQUS软件模拟隧道开挖过程以对比验证衬砌结构受力规律,得出该地层隧道地应力、围岩压力、衬砌结构内力特征。研究结果表明:1)围岩各项指标属于极硬土—极软岩临界范畴。2)该地层衬砌结构围岩质量较好,水平地应力为垂直地应力的2倍,可优化为Ⅲ—Ⅳ级围岩进行设计的同时增大侧压力系数。3)未闭合的初期支护不能有效限制围岩变形,可通过设置临时仰拱等措施改善受力状态;数值模拟结果与现场实测规律相符。4)该地层变形剧烈区为洞周开挖界限向围岩内1倍洞径范围,变形区域主要集中在拱顶;延迟开挖仰拱可有效减少仰拱内衬砌结构受力。  相似文献   

17.
衬砌裂缝是隧道工程中最常见的病害,准确评价存在裂缝的衬砌结构安全状况是隧道工程师面临的难题。通过隧道裂缝病害力学和几何特征分析,利用接触理论模拟裂缝面的接触摩擦作用,基于地层-结构方法建立含纵向裂缝的隧道计算模型,并综合钢筋混凝土强度理论和脆性材料断裂判据,建立存在裂缝的隧道衬砌结构安全性评价方法,在计算模型和评价方法...  相似文献   

18.
《公路》2021,66(8):350-354
在隧道建设过程中会遇到上软下硬的复合地层,如何控制复合地层隧道开挖对围岩和地层变形的影响成为亟待解决的工程问题。青岛地铁十三号线(R3)二期工程在施工中,隧道穿越上覆地层以土层为主、下部以岩层为主的"上软下硬"复合地层。通过采用数值模拟和现场监测并反馈的方法对青岛地区"上软下硬"复合地层双线平行隧道围岩变形特征和地层移动规律进行研究。研究结果表明:隧道在穿越均一或复合地层时,围岩和地表会产生不同程度的变形;隧道围岩软硬岩比例越高,隧道拱顶下沉、隧道底板隆起和地表沉降量也越大,且以先行隧道拱顶沉降最为显著,在施工中应加以重视。这为双线平行隧道在上软下硬复合地层施工提供了一定的指导意义。  相似文献   

19.
通过对吉林省图们侧长安隧道病害原因分析,确定了整治软岩偏压隧道塌方的原则,采用注浆加固围岩,网构钢拱架喷锚混凝土初期支护作为主要受力结构,待围岩相对稳定后,进行二次衬砌治理塌方取得成功。  相似文献   

20.
基于国内上软下硬地层盾构隧道典型工程案例,对上软下硬地层盾构工程案例区域分布特点及发展趋势、施工主要问题及其产生的原因进行分析。在此基础上,分别从隧道设计、盾构设计及工程实施的角度提出相应的对策措施,并结合相应的工程实例进行阐述。 研究得到上软下硬地层盾构实施主要问题,包括刀盘刀具磨损、刀盘结泥饼、刀盘卡死、排土器喷涌、盾构掘进姿态不良、衬砌损坏、地表沉降过大等方面。针对这些问题,采取如下措施: 1)隧道设计上可采取线型避让、特殊地层预处理、隧道结构特殊构造设计进行应对; 2)盾构制造上应充分考虑刀盘刀具、盾构机驱动、防冲刷及泡沫注入口的优化和超前地质探测装置的增设; 3)在施工上应优化施工参数,加强巡视和监测,做好应急预案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号