首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motorcycles play an important role in sharing the trip demand with automobiles for commuting, especially in many cities in Asia. However, the accident cost of a trip by motorcycle is higher than that of an automobile. This study analyzes the road pricing for the congestion and accident externalities of mixed traffic of automobiles and motorcycles. A model for equilibrium trips with no taxation and that for optimal trips with taxation are explored. The model is then applied to the Tucheng City–Banciao City–Taipei central business district corridor in Taipei metropolitan area. The findings in this case study show that the tax for accident externality is larger than that for congestion externality.  相似文献   

2.
Congestion pricing schemes have been traditionally derived based on analytical representations of travel demand and traffic flows, such as in bottleneck models. A major limitation of these models, especially when applied to urban networks, is the inconsistency with traffic dynamics and related phenomena such as hysteresis and the capacity drop. In this study we propose a new method to derive time-varying tolling schemes using the concept of the Network Fundamental Diagram (NFD). The adopted method is based on marginal cost pricing, while it also enables to account realistically for the dynamics of large and heterogeneous traffic networks. We derive two alternative cordon tolls using network-aggregated traffic flow conditions: a step toll that neglects the spatial distribution of traffic by simply associating the marginal costs of any decrease in production within the NFD to the surplus of traffic; and a step toll that explicitly accounts for how network performance is also influenced by the spatial variance in a 3D-NFD. This pricing framework is implemented in the agent-based simulation model MATSim and applied to a case study of the city of Zurich. The tolling schemes are compared with a uniform toll, and they highlight how the inhomogeneous distribution of traffic may compromise the effectiveness of cordon tolls.  相似文献   

3.
Demand and capacity fluctuations are common for roads and other congestible facilities. With ongoing advances in pricing technology and ways of communicating information to prospective users, state-dependent congestion pricing is becoming practical. But it is still rare or nonexistent in many potential applications. One explanation is that people dislike uncertainty about how much they will pay. To explore this idea, a model of reference-dependent preferences is developed based on Köszegi and Rabin (2006). Using a facility yields an “intrinsic” utility and a “gain-loss” utility measured relative to the probability distribution over states of utility outcomes. Two types of preferences are analyzed: bundled preferences in which gains and losses are perceived for overall utility, and unbundled preferences in which gains and losses are perceived separately for the toll and other determinants of utility.Tolls are chosen to maximize total expected utility plus revenues. With bundled preferences the toll is set above the Pigouvian level when usage conditions are good, and below it when conditions are bad, in order to reduce fluctuations in utility. With unbundled preferences the direction of toll adjustment is less clear and depends on whether supply or demand is variable. For both types of preferences tolls are sensitive to the strength of gain-loss utility. If gain-loss utility is moderately strong, a state-independent toll can be optimal.  相似文献   

4.
A growing literature exploits macroscopic theories of traffic to model congestion pricing policies in downtown zones. This study introduces trip length heterogeneity into this analysis and proposes a usage-based, time-varying congestion toll that alleviates congestion while prioritizing shorter trips. Unlike conventional trip-based tolls the scheme is intended to align the fees paid by drivers with the actual congestion damage they do, and to increase the toll’s benefits as a result.The scheme is intended to maximize the number of people that finish their trips close to their desired times. The usage-based toll is compared to a traditional, trip-based toll which neglects trip length. It is found that, like trip-based tolls, properly designed usage-based tolls alleviate congestion. But they reduce schedule delay more than trip-based tolls and do so with much smaller user fees. As a result usage-based tolls leave most of those who pay with a large welfare gain. This may increase the tolls’ political acceptability.  相似文献   

5.
Transportation analysts frequently assert that congestion pricing’s political obstacles can be overcome through astute use of the toll revenue pricing generates. Such “revenue recycling,” however, implies that the collectors of the toll revenue will not be its final recipients, meaning that any revenue recipient must believe that the revenue collector will honor promises to deliver the money. This raises the potential for credible commitment problems. Promises to spend revenue can solve one political problem, because revenue is an easy benefit to understand, but create another one, because revenue is easy to divert. Revenue recycling may therefore not be a promising way to build political support for congestion pricing. We highlight the role commitment problems have played efforts to implement congestion pricing, using examples from around the world and then focusing on California. Because congestion reduction is a more certain benefit than any particular use of the toll revenue, demonstration projects, rather than revenue promises, will be key to pricing’s political success.  相似文献   

6.
The rationale for congestion charges is that by internalising the marginal external congestion cost, they restore efficiency in the transport market. In the canonical model underlying this view, congestion is a static phenomenon, users are taken to be homogenous, there is no travel time risk, and a highly stylised model of congestion is used. The simple analysis also ignores that real pricing schemes are only rough approximations to ideal systems and that inefficiencies in related markets potentially affect the case for congestion charges. The canonical model tends to understate the marginal external congestion cost because it ignores user heterogeneity and trip timing inefficiencies. With respect to the relevance of interactions between congestion and congestion charges and tax distortions and distributional concerns, recent insights point out that there is no general case for modifying charges for such interactions. Therefore the simple Pigouvian rule remains a good first approximation for the design of road charging systems.  相似文献   

7.
This paper analyzes the dynamic traffic assignment problem on a two-alternative network with one alternative subject to a dynamic pricing that responds to real-time arrivals in a system optimal way. Analytical expressions for the assignment, revenue and total delay in each alternative are derived as a function of the pricing strategy. It is found that minimum total system delay can be achieved with many different pricing strategies. This gives flexibility to operators to allocate congestion to either alternative according to their specific objective while maintaining the same minimum total system delay. Given a specific objective, the optimal pricing strategy can be determined by finding a single parameter value in the case of HOT lanes. Maximum revenue is achieved by keeping the toll facility at capacity with no queues for as long as possible. Guidelines for implementation are discussed.  相似文献   

8.
As governments seek to transition to more efficient vehicle fleets, one strategy has been to incentivize ‘green’ vehicle choice by exempting some of these vehicles from road user charges. As an example, to stimulate sales of energy efficient vehicles (EEVs) in Sweden, some of these automobiles were exempted from Stockholm’s congestion tax. In this paper the effect this policy had on the demand for new, privately-owned, exempt EEVs is assessed by first estimating a model of vehicle choice and then by applying this model to simulate vehicle alternative market shares under different policy scenarios. The database used to calibrate the model includes owner-specific demographics merged with vehicle registry data for all new private vehicles registered in Stockholm County during 2008. Characteristics of individuals with a higher propensity to purchase an exempt EEV were identified. The most significant factors included intra-cordon residency (positive), distance from home to the CBD (negative), and commuting across the cordon (positive). By calculating vehicle shares from the vehicle choice model and then comparing these estimates to a simulated scenario where the congestion tax exemption was inactive, the exemption was estimated to have substantially increased the share of newly purchased, private, exempt EEVs in Stockholm by 1.8% (±0.3%; 95% C.I.) to a total share of 18.8%. This amounts to an estimated 10.7% increase in private, exempt EEV purchases during 2008, i.e., 519 privately owned, exempt EEVs.  相似文献   

9.
We consider a public and congested airport served by airlines that may have market power, and two types of travelers with different relative values of time. We find that in the absence of passenger-type-based price discrimination by airlines, it can be useful to increase the airport charge so as to protect passengers with a great relative time value from excessive congestion caused by passengers with a low relative time value. As a result, the socially efficient airport charge can be substantially higher than what we learned from the recent literature on congestion pricing with non-atomistic airlines.  相似文献   

10.
This paper reviews the methods and technologies for congestion pricing of roads. Congestion tolls can be implemented at scales ranging from individual lanes on single links to national road networks. Tolls can be differentiated by time of day, road type and vehicle characteristics, and even set in real time according to current traffic conditions. Conventional toll booths have largely given way to electronic toll collection technologies. The main technology categories are roadside-only systems employing digital photography, tag & beacon systems that use short-range microwave technology, and in-vehicle-only systems based on either satellite or cellular network communications. The best technology choice depends on the application. The rate at which congestion pricing is implemented, and its ultimate scope, will depend on what technology is used and on what other functions and services it can perform.  相似文献   

11.
Recently there has been a resurgence in the interest of road pricing. Most studies adopt the static modeling paradigm, typically using either separable monotone or backward-bending link travel time functions for the analysis. In this study, through the shockwave analysis, we show that separable backward-bending functions are not appropriate for modeling hyper-congestion and hence road pricing. In the absence of queue spillback, link travel time is a monotone increasing function of inflow. However, in the presence of queue spillback, we show that the static paradigm even with a monotone travel time function cannot adequately portray the congestion phenomenon. In some cases, the tolls determined by the static paradigm can be even detrimental, worsening rather than alleviating the congestion problem. In the end, to model congested networks properly, perhaps one has no other choices but to adopt a modeling paradigm that faithfully captures both the temporal as well as the spatial dimensions of traffic queuing.  相似文献   

12.
This paper develops a mathematical model and solution procedure to identify an optimal zonal pricing scheme for automobile traffic to incentivize the expanded use of transit as a mechanism to stem congestion and the social costs that arise from that congestion. The optimization model assumes that there is a homogenous collection of users whose behavior can be described as utility maximizers and for which their utility function is driven by monetary costs. These monetary costs are assumed to be the tolls in place, the per mile cost to drive, and the value of their time. We assume that there is a system owner who sets the toll prices, collects the proceeds from the tolls, and invests those funds in transit system improvements in the form of headway reductions. This yields a bi-level optimization model which we solve using an iterative procedure that is an integration of a genetic algorithm and the Frank–Wolfe method. The method and solution procedure is applied to an illustrative example.  相似文献   

13.
This paper investigates evolutionary implementation of congestion pricing schemes to minimize the system cost and time, measured in monetary and time units, respectively, with the travelers’ day-to-day route adjustment behavior and their heterogeneity. The travelers’ heterogeneity is captured by their value-of-times. First, the multi-class flow dynamical system is proposed to model the travelers’ route adjustment behavior in a tolled transportation network with multiple user classes. Then, the stability condition and properties of equilibrium is examined. We further investigate the trajectory control problem via dynamic congestion pricing scheme to derive the system cost, time optimum, and generally, Pareto optimum in the sense of simultaneous minimization of system cost and time. The trajectory control problem is modeled by a differential–algebraic system with the differential sub-system capturing the flow dynamics and the algebraic one capturing the pricing constraint. The explicit Runge–Kutta method is proposed to calculate the dynamic flow trajectories and anonymous link tolls. The method allows the link tolls to be updated with any predetermined periods and forces the system cost and/or time to approach the optimum levels. Both analytical and numerical examples are adopted to examine the efficiency of the method.  相似文献   

14.
This study investigates Pareto-improving congestion pricing and revenue refunding schemes in general transportation networks, which make every road user better off as compared with the situation without congestion pricing. We consider user heterogeneity in value of time (VOT) by adopting a multiclass user model with fixed origin–destination (OD) demands. We first prove that an OD and class-based Pareto-improving refunding scheme exists if and only if the total system monetary travel disutility is reduced. In view of the practical difficulty in identifying individual user’s VOT, we further investigate class-anonymous refunding schemes that give the same amount of refund to all user classes traveling between the same OD pair regardless of their VOTs. We establish a sufficient condition for the existence of such OD-specific but class-anonymous Pareto-improving refunding schemes, which needs information only on the average toll paid and average travel time for trips between each OD pair.  相似文献   

15.
This paper addresses the optimal toll design problem for the cordon-based congestion pricing scheme, where both a time-toll and a nonlinear distance-toll (i.e., joint distance and time toll) are levied for each network user’s trip in a pricing cordon. The users’ route choice behaviour is assumed to follow the Logit-based stochastic user equilibrium (SUE). We first propose a link-based convex programming model for the Logit-based SUE problem with a joint distance and time toll pattern. A mathematical program with equilibrium constraints (MPEC) is developed to formulate the optimal joint distance and time toll design problem. The developed MPEC model is equivalently transformed into a semi-infinite programming (SIP) model. A global optimization method named Incremental Constraint Method (ICM) is designed for solving the SIP model. Finally, two numerical examples are used to assess the proposed methodology.  相似文献   

16.
Those who oppose tolls and other forms of road pricing argue that low-income, urban residents will suffer if they must pay to use congested freeways. This contention, however, fails to consider (1) how much low-income residents already pay for transportation in taxes and fees, or (2) how much residents would pay for highway infrastructure under an alternative revenue-generating scheme, such as a sales tax. This paper compares the cost burden of a value-priced road, State Route 91 (SR91) in Orange County, California with the cost burden under Orange County’s local option transportation sales tax, Measure M. We find that although the sales tax spreads the costs of transportation facilities across a large number of people inside and outside Orange County, it redistributes about $3 million (USD) in revenues from less affluent residents to those with higher incomes. The entire Measure M program redistributes an estimated $26 million from low-income residents to the more affluent. Low-income drivers as individuals save substantially if they do not have to pay tolls, but as a group low-income residents, on average, pay more out-of-pocket with sales taxes.
Brian D. TaylorEmail:

Lisa Schweitzer   is an assistant professor at the University of Southern California. Her work on environmental injustice in transportation has appeared in Urban Studies, Built Environment, and Transportation Research Parts A and D. Brian D. Taylor   is the Director of the Institute of Transportation Studies and Professor of Urban Planning at the University of California, Los Angeles. His research centers on how society pays for transportation systems and how these systems in turn serve the needs of people who have low levels of mobility.  相似文献   

17.
Nonlinear pricing (a form of second-degree price discrimination) is widely used in transportation and other industries but it has been largely overlooked in the road-pricing literature. This paper explores the incentives for a profit-maximizing toll-road operator to adopt some simple nonlinear pricing schemes when there is congestion and collecting tolls is costly. Users are assumed to differ in their demands to use the road. Regardless of the severity of congestion, an access fee is always profitable to implement either as part of a two-part tariff or as an alternative to paying a toll. Use of access fees for profit maximization can increase or decrease welfare relative to usage-only pricing for profit maximization. Hence a ban on access fees could reduce welfare.  相似文献   

18.
This paper explores a new type of congestion pricing that differentiates users with respect to their travel characteristics or attributes, and charges them different amounts of toll accordingly. The scheme can reduce the financial burden of travelers or lead to more substantial reduction of congestion. Given that the scheme requires tracking vehicles, an incentive program is designed to mitigate travelers’ privacy concerns and entice them to voluntarily disclose their location information.  相似文献   

19.
We model and analyze optimal (welfare maximizing) prices and design of transport services in a bimodal context. Car congestion and transit design are simultaneously introduced and consumers choose based on the full price they perceive. The optimization variables are the congestion toll, the transit fare (and hence the level of subsidies) and transit frequency. We obtain six main results: (i) the optimal car-transit split is generally different from the total cost minimizing one; (ii) optimal congestion and transit price are interdependent and have an optimal frequency attached; (iii) the optimal money price difference together with the optimal frequency yield the optimal modal split; (iv) if this modal split is used in traditional stand-alone formulations – where each mode is priced independently–resulting congestion tolls and transit subsidies and fares are consistent with the optimal money price difference; (v) self-financing of the transport sector is feasible; and (vi) investment in car infrastructure induces an increase in generalized cost for all public transport users.  相似文献   

20.
Pricing of roadways opens doors for infrastructure financing, and congestion pricing seeks to address inefficiencies in roadway operations. This paper emphasizes the revenue-generation opportunities and welfare impacts of flat-tolling schemes, standard congestion pricing, and credit-based congestion pricing policies. While most roadway investment decisions focus on travel time savings for existing trips, this work turns to logsum differences (which quantify changes in consumer surplus) for nested logit specifications across two traveler types, two destinations, three modes and three times of day, in order to arrive at welfare- and revenue-maximizing solutions. This behavioral specification is quite flexible, and facilitates benefit-cost calculations (as well as equity analysis), as demonstrated in this paper.The various cases examined suggest significant opportunities for financing new roadway investment while addressing congestion and equity issues, with net gains for both traveler types. Application results illustrate how, even after roadway construction and maintenance costs are covered, receipts may remain to distribute to eligible travelers so that typical travelers can be made better off than if a new, non-tolled road had been constructed. Moreover, tolling both routes (new and old) results in substantially shorter payback periods (5 versus 20 years) and higher welfare outcomes (in the case of welfare-maximizing tolls with credit distributions to all travelers). The tools and techniques highlighted here illustrate practical methods for identifying welfare-enhancing and cost-recovering investment opportunities, while recognizing multiple user classes and appropriate demand elasticity across times of day, destinations, modes and routes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号