首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a hard braking on a split-μ road, the achievement of shorter stopping distance while maintaining the vehicle in the straight line are of great importance. In this paper, to achieve these conflicting aims, an optimal nonlinear algorithm based on the prediction of vehicle responses is presented to distribute the wheel braking forces properly. The base of this algorithm is reducing the maximum achievable braking forces of one side wheels, as low as possible, so that the minimum stabilizing yaw moment is produced. The optimal property of the proposed control method makes it possible to get a trade-off between the shorter stopping distance and the less deviation of the vehicle heading from the straight line. The special case of this algorithm leads to the conventional anti-lock braking system (ABS) which generates the maximum braking forces for all wheels to attain the minimum stopping distance. However, the ABS cannot control the vehicle directional stability directly. The simulation results carried out using a nonlinear 8-DOF vehicle model demonstrate that the designed control system has a suitable performance to attain the desired purposes compared with the convectional ABS.  相似文献   

2.
基于MATLAB的汽车操纵稳定性分析   总被引:1,自引:0,他引:1  
文章利用MATLAB软件强大的计算能力和绘图功能,通过建立汽车操纵稳定性分析模型,对汽车稳态响应和前轮角阶跃输入下的瞬态响应进行了求解分析。结果表明:轮胎的侧偏刚度(绝对值)越大,汽车的操作稳定性就越好;横摆角速度的固有频率越高越好;稳定性因素K应小于0,使汽车有适度的不足转向,有利于行车安全。  相似文献   

3.
Weaving sections, where a merge and a diverge are in close proximity, are considered as crucial bottlenecks in the highway network. Lane changes happen frequently in such sections, leading to a reduced capacity and the traffic phenomenon known as capacity drop. This paper studies how the emerging automated vehicle technology can improve the operations and increase the capacity of weaving sections. We propose an efficient yet effective multiclass hybrid model that considers two aspects of this technology in scenarios with various penetration rates: (i) the potential to control the desired lane change decisions of automated vehicles, which is represented in a macroscopic manner as the distribution of lane change positions, and (ii) the lower reaction time associated with automated vehicles that can reduce headways and the required gaps for lane changing maneuvers. The proposed model is successfully calibrated and validated with empirical observations from conventional vehicles at a weaving section near the city of Basel, Switzerland. It is able to replicate traffic dynamics in weaving sections including the capacity drop. This model is then applied in a simulation-based optimization framework that searches for the optimal distribution of the desired lane change positions to maximize the capacity of weaving sections. Simulation results show that by optimizing the distribution of the desired lane change positions, the capacity of the studied weaving section can increase up to 15%. The results also indicate that if the reaction time is considered as well, there is an additional combined effect that can further increase the capacity. Overall, the results show the great potential of the automated vehicle technology for increasing the capacity of weaving sections.  相似文献   

4.
This paper considers modeling and control of uncertain Macroscopic Fundamental Diagram (MFD) systems for multiple-region networks. First, the nonlinear vehicle conservation equations based on MFD dynamics, presented in earlier publications, are transformed to linear equations with parameter uncertainties. The parameter uncertainties include the destination decomposition fractions, that are difficult to estimate in reality. Then, the uncertain linear model is utilized to design a robust feedback controller by an interpolation-based approach. This approach (i) guarantees robustness against all parameter uncertainties, (ii) handle control and state constraints, and (iii) present a computationally cheap solution. The main idea is to interpolate between (i) a stabilizing outer controller that respects the control and state constraints and (ii) an inner robustly stable controller designed by any method. The robust control is further challenged to deal with different relative locations of reference accumulation points on the MFD diagrams. Numerical results for a two-region system show that the uncertain linear model can replace the nonlinear model for modeling and control. Moreover, the robust control law is presented as implicit and explicit solutions, where in the implicit case one linear programming (LP) problem is solved at each time instant, while in the explicit case, the control law is shown as a piecewise affine function of state. Finally, a comparison between the interpolating controller and other controllers in the literature is carried out. The results demonstrate the performance advantages from applying the robust interpolating controller.  相似文献   

5.
本文设计出一种电流滞环控制策略,通过跟踪直线电机式悬架控制系统输出的最优阻尼力转变,得到参考电流,经过空间矢量调制后输出PWM波,输送到电流逆变器中转换为三相电流,进而控制直线电机的作用。经过仿真可以得出电流滞环控制策略控制效果良好,可以输出理想的阻尼力,为电动汽车主动悬架的研究提供基础。  相似文献   

6.
This paper develops a novel linear programming formulation for autonomous intersection control (LPAIC) accounting for traffic dynamics within a connected vehicle environment. Firstly, a lane based bi-level optimization model is introduced to propagate traffic flows in the network, accounting for dynamic departure time, dynamic route choice, and autonomous intersection control in the context of system optimum network model. Then the bi-level optimization model is transformed to the linear programming formulation by relaxing the nonlinear constraints with a set of linear inequalities. One special feature of the LPAIC formulation is that the entries of the constraint matrix has only {−1, 0, 1} values. Moreover, it is proved that the constraint matrix is totally unimodular, the optimal solution exists and contains only integer values. It is also shown that the traffic flows from different lanes pass through the conflict points of the intersection safely and there are no holding flows in the solution. Three numerical case studies are conducted to demonstrate the properties and effectiveness of the LPAIC formulation to solve autonomous intersection control.  相似文献   

7.
Traffic congestion and energy issues have set a high bar for current ground transportation systems. With advances in vehicular communication technologies, collaborations of connected vehicles have becoming a fundamental block to build automated highway transportation systems of high efficiency. This paper presents a distributed optimal control scheme that takes into account macroscopic traffic management and microscopic vehicle dynamics to achieve efficiently cooperative highway driving. Critical traffic information beyond the scope of human perception is obtained from connected vehicles downstream to establish necessary traffic management mitigating congestion. With backpropagating traffic management advice, a connected vehicle having an adjustment intention exchanges control-oriented information with immediately connected neighbors to establish potential cooperation consensus, and to generate cooperative control actions. To achieve this goal, a distributed model predictive control (DMPC) scheme is developed accounting for driving safety and efficiency. By coupling the states of collaborators in the optimization index, connected vehicles achieve fundamental highway maneuvers cooperatively and optimally. The performance of the distributed control scheme and the energy-saving potential of conducting such cooperation are tested in a mixed highway traffic environment by the means of microscopic simulations.  相似文献   

8.
This work addresses the formation phase of automatic platooning. The objective is to optimally control the throttle of vehicles, with a given arbitrary initial condition, such that desired ground speed and inter-vehicular spacings are reached. The steering of the vehicles is also controlled, because the vehicles should track a desired path while forming the platoon. In order to address the platoon formation problem, a cooperative strategy is formed by constructing a discrete state space model which represents the dynamics of a set of n vehicles. Once this model is set, a control method known as Interpolating Control, which aims at regulating to the origin an uncertain and/or time-varying linear discrete-time system with state and control constraints, is utilized. The performance of this control method is evaluated and compared with other approaches such as Model Predictive Control (MPC).Simulations are conducted which suggest that the Interpolating Control approach can be seen as an alternative to optimization-based control schemes such as Model Predictive Control, especially for problems for which finding the optimal solution requires calculations, where the Interpolating Control approach can provide a straightforward sub-optimal solution.In the experimental part of this work, the control algorithms for the platoon formation and path tracking problems are combined, and tested in a laboratory environment, using three mobile robots equipped with wireless routers. Validation of the proposed models and control algorithms is achieved by successful experiments.  相似文献   

9.
Motivated by the advancement in connected and autonomous vehicle technologies, this paper develops a novel car-following control scheme for a platoon of connected and autonomous vehicles on a straight highway. The platoon is modeled as an interconnected multi-agent dynamical system subject to physical and safety constraints, and it uses the global information structure such that each vehicle shares information with all the other vehicles. A constrained optimization based control scheme is proposed to ensure an entire platoon’s transient traffic smoothness and asymptotic dynamic performance. By exploiting the solution properties of the underlying optimization problem and using primal-dual formulation, this paper develops dual based distributed algorithms to compute optimal solutions with proven convergence. Furthermore, the asymptotic stability of the unconstrained linear closed-loop system is established. These stability analysis results provide a principle to select penalty weights in the underlying optimization problem to achieve the desired closed-loop performance for both the transient and the asymptotic dynamics. Extensive numerical simulations are conducted to validate the efficiency of the proposed algorithms.  相似文献   

10.
This paper presents a model-based multiobjective control strategy to reduce bus bunching and hence improve public transport reliability. Our goal is twofold. First, we define a proper model, consisting of multiple static and dynamic components. Bus-following model captures the longitudinal dynamics taking into account the interaction with the surrounding traffic. Furthermore, bus stop operations are modeled to estimate dwell time. Second, a shrinking horizon model predictive controller (MPC) is proposed for solving bus bunching problems. The model is able to predict short time-space behavior of public transport buses enabling constrained, finite horizon, optimal control solution to ensure homogeneity of service both in time and space. In this line, the goal with the selected rolling horizon control scheme is to choose a proper velocity profile for the public transport bus such that it keeps both timetable schedule and a desired headway from the bus in front of it (leading bus). The control strategy predicts the arrival time at a bus stop using a passenger arrival and dwell time model. In this vein, the receding horizon model predictive controller calculates an optimal velocity profile based on its current position and desired arrival time. Four different weighting strategies are proposed to test (i) timetable only, (ii) headway only, (iii) balanced timetable - headway tracking and (iv) adaptive control with varying weights. The controller is tested in a high fidelity traffic simulator with realistic scenarios. The behavior of the system is analyzed by considering extreme disturbances. Finally, the existence of a Pareto front between these two objectives is also demonstrated.  相似文献   

11.
Literature has shown potentials of Connected/Cooperative Automated Vehicles (CAVs) in improving highway operations, especially on roadway capacity and flow stability. However, benefits were also shown to be negligible at low market penetration rates. This work develops a novel adaptive driving strategy for CAVs to stabilise heterogeneous vehicle strings by controlling one CAV under vehicle-to-infrastructure (V2I) communications. Assumed is a roadside system with V2I communications, which receives control parameters of the CAV in the string and estimates parameters imperfectly of non-connected automated vehicles. It determines the adaptive control parameters (e.g. desired time gap and feedback gains) of the CAV if a downstream disturbance is identified and sends them to the CAV. The CAV changes its behaviour based on the adaptive parameters commanded by the roadside system to suppress the disturbance.The proposed adaptive driving strategy is based on string stability analysis of heterogeneous vehicle strings. To this end, linearised vehicle dynamics model and control law are used in the controller parametrisation and Laplace transform of the speed and gap error dynamics in time domain to frequency domain enables the determination of sufficient string stability criteria of heterogeneous strings. The analytical string stability conditions give new insights into automated vehicular string stability properties in relation to the system properties of time delays and controller design parameters of feedback gains and desired time gap. It further allows the quantification of a stability margin, which is subsequently used to adapt the feedback control gains and desired time gap of the CAV to suppress the amplification of gap and speed errors through the string.Analytical results are verified via systematic simulation of both homogeneous and heterogeneous strings. Simulation demonstrates the predictive power of the analytical string stability conditions. The performance of the adaptive driving strategy under V2I cooperation is tested in simulation. Results show that even the estimation of control parameters of non-connected automated vehicles are imperfect and there is mismatch between the model used in analytical derivation and that in simulation, the proposed adaptive driving strategy suppresses disturbances in a wide range of situations.  相似文献   

12.
Automated driving is gaining increasing amounts of attention from both industry and academic communities because it is regarded as the most promising technology for improving road safety in the future. The ability to make an automated lane change is one of the most important parts of automated driving. However, there has been little research into automated lane change maneuvers, and current research has not identified a way to avoid potential collisions during lane changes, which result from the state variations of the other vehicles. One important reason is that the lane change vehicle cannot acquire accurate information regarding the other vehicles, especially the vehicles in the adjacent lane. However, vehicle-to-vehicle communication has the advantage of providing more information, and this information is more accurate than that obtained from other sensors, such as radars and lasers. Therefore, we propose a dynamic automated lane change maneuver based on vehicle-to-vehicle communication to accomplish an automated lane change and eliminate potential collisions during the lane change process. The key technologies for this maneuver are trajectory planning and trajectory tracking. Trajectory planning calculates a reference trajectory satisfying the demands of safety, comfort and traffic efficiency and updates it to avoid potential collisions until the lane change is complete. The trajectory planning method converts the planning problem into a constrained optimization problem using the lane change time and distance. This method is capable of planning a reference trajectory for a normal lane change, an emergency lane change and a change back to the original lane. A trajectory-tracking controller based on sliding mode control calculates the control inputs to make the host vehicle travel along the reference trajectory. Finally, simulations and experiments using a driving simulator are conducted. They demonstrate that the proposed dynamic automated lane change maneuver can avoid potential collisions during the lane change process effectively.  相似文献   

13.
This paper proposes a novel concept of congestion pricing based on voluntary peer-to-peer exchange of money between motorists in exchange for one ceding priority to another in a traffic stream. While in the classical congestion charging paradigm payments are compulsory and flow only towards the system operator, in the proposed marketplace participation is voluntary and motorists directly compensate each other. A particular motorist may find that he/she is a ‘payer’ at certain points in a given journey and a ‘payee’ at others.Humans would not be expected to successfully seek, negotiate and execute a continuous series of peer-to-peer trades involving micro-payments while also handling the cognitively-demanding task of driving; real-world implementation will therefore require vehicles operating under fully-automated control in both the longitudinal and lateral dimensions during the time periods that they seek and engage in trades. The automated vehicle control algorithms must be sufficiently intelligent and adaptable to enable alternative maneuvers on short timescales, given the inherent uncertainty of whether or not a potential trade will in fact be executed. The peer-to-peer trading would be executed algorithmically, subject to strategic-level guidance given by a vehicle’s occupant(s) regarding the occupant’s relative valuation of money and priority in the traffic stream.In this paper we detail the prospective marketplace and present a simple simulation model to expose its properties. We show that the proposed peer-to-peer marketplace could lead to both desirable and undesirable outcomes; which of these would be predominant is a matter requiring empirical study. The paper concludes with a discussion of further research needs to refine and develop these concepts into practice.  相似文献   

14.
A schedule consisting of an appropriate arrival time at each time control point can ensure reliable transport services. This paper develops a novel time control point strategy coupled with transfer coordination for solving a multi‐objective schedule design problem to improve schedule adherence and reduce intermodal transfer disutility. The problem is formulated using a robust mixed‐integer nonlinear programming model. The mixed‐integer nonlinear programming model is equivalently transformed into a robust mixed‐integer linear programming model, which is then approximated by a deterministic mixed‐integer linear programming model through Monte Carlo simulation. Thus, the optimal scheduled arrival time at each time control point can be precisely obtained using cplex . Numerical experiments based on three bus lines and the mass rapid transit system in Singapore are presented, and the results show that the schedule determined using the developed model is able to provide not only reliable bus service but also a smooth transfer experience for passengers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Connected vehicle environment provides the groundwork of future road transportation. Researches in this area are gaining a lot of attention to improve not only traffic mobility and safety, but also vehicles’ fuel consumption and emissions. Energy optimization methods that combine traffic information are proposed, but actual testing in the field proves to be rather challenging largely due to safety and technical issues. In light of this, a Hardware-in-the-Loop-System (HiLS) testbed to evaluate the performance of connected vehicle applications is proposed. A laboratory powertrain research platform, which consists of a real engine, an engine-loading device (hydrostatic dynamometer) and a virtual powertrain model to represent a vehicle, is connected remotely to a microscopic traffic simulator (VISSIM). Vehicle dynamics and road conditions of a target vehicle in the VISSIM simulation are transmitted to the powertrain research platform through the internet, where the power demand can then be calculated. The engine then operates through an engine optimization procedure to minimize fuel consumption, while the dynamometer tracks the desired engine load based on the target vehicle information. Test results show fast data transfer at every 200 ms and good tracking of the optimized engine operating points and the desired vehicle speed. Actual fuel and emissions measurements, which otherwise could not be calculated precisely by fuel and emission maps in simulations, are achieved by the testbed. In addition, VISSIM simulation can be implemented remotely while connected to the powertrain research platform through the internet, allowing easy access to the laboratory setup.  相似文献   

17.
In this paper, we develop a coordinated traffic responsive ramp control strategy based on feedback control and artificial neural networks. The proposed feedback control law is nonlinear and realized by a series of neural networks. The parameters of the neural networks are obtained through a nonlinear optimization procedure. Traffic simulations show that the proposed nonlinear ramp control strategy compares favorably against the well-known linear quadratic (LQ) control strategy in reducing total travel times, particularly at situations where drastic changes in traffic demand and road capacity occur.  相似文献   

18.
Video image processing system (VIPS) is more efficient than other detecting systems. However, VIPS involves outdoor images and is very sensitive to the external environment, which could greatly decrease its accuracy according to rapid environmental changes. To obtain accurate traffic data accordingly, VIPS must address the problems such as growing shadows in transition; distortion of images due to the headlights at night; noises caused by the rain, snow or fog; and occlusions. This study intends to accurately calculate traffic data while addressing the shadow and occlusion problems, which are the most difficult tasks for the image‐detector‐based traffic data system. In this study, an algorithm for the individual vehicle tracking collection was developed to address the occlusion problem and to eliminate the noises or shadows caused by external environmental factors. A traffic data collection system was also proposed in order to accurately track individual vehicles that pass through the detection region. In addition, establishing an integrated system with shadow removal and occlusion handling using an image processing was also proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a model-based perimeter control policy for large-scale urban vehicular networks is proposed. Assuming a homogeneously loaded vehicle network and the existence of a well-posed Network Fundamental Diagram (NFD), we describe a protected network throughout its aggregated dynamics including nonlinear exit flow characteristics. Within this framework of constrained optimal boundary flow gating, two main performance metrics are considered: (a) first, connected to the NFD, the concept of average network travel time and delay as a performance metric is defined; (b) second, at boundaries, we take into account additional external network queue dynamics governed by uncontrolled inflow demands. External queue capacities in terms of finite-link lengths are used as the second performance metric. Hence, the corresponding performance requirement is an upper bound of external queues. While external queues represent vehicles waiting to enter the protected network, internal queue describes the protected network’s aggregated behavior.By controlling the number of vehicles joining the internal queue from the external ones, herewith a network traffic flow maximization solution subject to the internal and external dynamics and their performance constraints is developed. The originally non-convex optimization problem is transformed to a numerically efficiently convex one by relaxing the performance constraints into time-dependent state boundaries. The control solution can be interpreted as a mechanism which transforms the unknown arrival process governing the number of vehicles entering the network to a regulated process, such that prescribed performance requirements on travel time in the network and upper bound on the external queue are satisfied. Comparative numerical simulation studies on a microscopic traffic simulator are carried out to show the benefits of the proposed method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号