首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vehicle-to-vehicle communication systems allow vehicles to share state information with one another to improve safety and efficiency of transportation networks. One of the key applications of such a system is in the prediction and avoidance of collisions between vehicles. If a method to do this is to succeed it must be robust to measurement uncertainty and to loss of communication links. The method should also be general enough that it does not rely on constraints on vehicle motion for the accuracy of its predictions. It should work for all interactions between vehicles and not just a select subset. This paper presents a method to calculate Time to Collision for unconstrained vehicle motion. This metric is gated using a novel technique based on relative vehicle motion that we call “looming”. Finally, these ideas are integrated into a probabilistic framework that accounts for uncertainty in vehicle state and loss of vehicle-to-vehicle communication. Together this work represents a new way of considering vehicle collision estimation. These algorithms are validated on data collected from real world vehicle trials.  相似文献   

2.
J. Piao  M. McDonald 《运输评论》2013,33(5):659-684
Abstract

Advanced Driver Assistance Systems (ADAS) have been one of the most active areas of ITS studies in the last two decades. ADAS aim to support drivers by either providing warning to reduce risk exposures, or automating some of the control tasks to relieve a driver from manual control of a vehicle. ADAS functions can be achieved through an autonomous approach with all instrumentation and intelligence on board the vehicle, or through a cooperative approach, where assistance is provided from roadways and/or from other vehicles. In this article, recent research and developments of longitudinal control assistance systems are reviewed including adaptive cruise control, forward collision warning and avoidance, and platooning assistants. The review focuses on comparing between autonomous systems and cooperative systems in terms of technologies used, system impacts and implementation. The main objective is to achieve common understanding on ADAS functional potentials and limitations and to identify research needs for further studies.  相似文献   

3.
This contribution furthers the control framework for driver assistance systems in Part I to cooperative systems, where equipped vehicles can exchange relevant information via vehicle-to-vehicle communication to improve the awareness of the ambient situation (cooperative sensing) and to manoeuvre together under a common goal (cooperative control). To operationalize the cooperative sensing strategy, the framework is applied to the development of a multi-anticipative controller, where an equipped vehicle uses information from its direct predecessor to predict the behaviour of its pre-predecessor. To operationalize the cooperative control strategy, we design cooperative controllers for sequential equipped vehicles in a platoon, where they collaborate to optimise a joint objective. The cooperative control strategy is not restricted to cooperation between equipped vehicles. When followed by a human-driven vehicle, equipped vehicles can still exhibit cooperative behaviour by predicting the behaviour of the human-driven follower, even if the prediction is not perfect.The performance of the proposed controllers are assessed by simulating a platoon of 11 vehicles with reference to the non-cooperative controller proposed in Part I. Evaluations show that the multi-anticipative controller generates smoother behaviour in accelerating phase. By a careful choice of the running cost specification, cooperative controllers lead to smoother decelerating behaviour and more responsive and agile accelerating behaviour compared to the non-cooperative controller. The dynamic characteristics of the proposed controllers provide new insights into the potential impact of cooperative systems on traffic flow operations, particularly at the congestion head and tail.  相似文献   

4.
The dynamic vehicle allocation problem arises when a motor carrier must simultaneously and in real time coordinate the dispatching of vehicles from one region to the next all over the country. The decision to send a vehicle loaded or empty from one region to the next, arriving in the destination region at some point in the future, must anticipate the downstream impacts of the decision. The consequences of another load in a particular region at some point in the future, however, are highly uncertain. A simple methodology is proposed which calculates approximately the marginal value of an additional vehicle in each region in the future. This information is then used to generate a standard pure network which can be efficiently optimized to give dispatching decisions for today.  相似文献   

5.
Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication are emerging components of intelligent transport systems (ITS) based on which vehicles can drive in a cooperative way and, hence, significantly improve traffic flow efficiency. However, due to the high vehicle mobility, the unreliable vehicular communications such as packet loss and transmission delay can impair the performance of the cooperative driving system (CDS). In addition, the downstream traffic information collected by roadside sensors in the V2I communication may introduce measurement errors, which also affect the performance of the CDS. The goal of this paper is to bridge the gap between traffic flow modelling and communication approaches in order to build up better cooperative traffic systems. To this end, we aim to develop an enhanced cooperative microscopic (car-following) traffic model considering V2V and V2I communication (or V2X for short), and investigate how vehicular communications affect the vehicle cooperative driving, especially in traffic disturbance scenarios. For these purposes, we design a novel consensus-based vehicle control algorithm for the CDS, in which not only the local traffic flow stability is guaranteed, but also the shock waves are supposed to be smoothed. The IEEE 802.11p, the defacto vehicular networking standard, is selected as the communication protocols, and the roadside sensors are deployed to collect the average speed in the targeted area as the downstream traffic reference. Specifically, the imperfections of vehicular communication as well as the measured information noise are taken into account. Numerical results show the efficiency of the proposed scheme. This paper attempts to theoretically investigate the relationship between vehicular communications and cooperative driving, which is needed for the future deployment of both connected vehicles and infrastructure (i.e. V2X).  相似文献   

6.
Cooperation between road users through V2X communication is a way to improve GNSS localization accuracy. When vehicles localization systems involve standalone GNSS receivers, the resulting accuracy can be affected by satellite-specific errors of several meters. This paper studies how road-features like lane marking detected by on-board cameras can be exploited to reduce absolute position errors of cooperative vehicles sharing information in real-time in a network. The algorithms considered in this work are based on a error bounded set membership strategy. In every vehicle, a set membership algorithm computes the absolute position and an estimation of the satellite-specific errors by using raw GNSS pseudoranges, lane boundary measurements and a 2D georeferenced road map which provides absolute geometric constraints. As lane-boundary measurements provide essentially cross-track corrections in the position estimation process, cooperation enables the vehicles to improve their own estimates thanks to the different orientation of the roads. Set-membership methods are very efficient to solve this problem since they do not involve any independence hypothesis of the errors and so, the same information can be used several times in the computation. Such class of algorithm provides a novel approach to improve position accuracy for connected vehicles guaranteeing the integrity of the computed solution which is pivoting for automated automotive systems requiring guaranteed safety-critical solutions. Results from simulations and real experiments show that sharing position corrections reduces significantly satellite-specific GNSS errors effects in both cross-track and along-track components. Moreover, it is shown that lane-boundary measurements help reducing estimation errors for all the networked vehicles even those which are not equipped with an embedded perception system.  相似文献   

7.
This paper presents improved solution methods for kinematic wave traffic problems with concave flow-density relations. As explained in part I of this work, the solution of a kinematic wave problem is a set of continuum least-cost paths in space-time. The least cost to reach a point is the vehicle number. The idea here consists in overlaying a dense but discrete network with appropriate costs in the solution region and then using a shortest-path algorithm to estimate vehicle numbers. With properly designed networks, this procedure is more accurate than existing methods and can be applied to more complicated problems. In many important cases its results are exact.  相似文献   

8.
Recently, the cooperative control of multiple vessels has been gaining increasing attention because of the potential robustness, reliability and efficiency of multi-agent systems. In this paper, we propose the concept of Cooperative Multi-Vessel Systems (CMVSs) consisting of multiple coordinated autonomous vessels. We in particular focus on the so-called Vessel Train Formation (VTF) problem. The VTF problem considers not only cooperative collision avoidance, but also grouping of vessels. An MPC-based approach is proposed for addressing the VTF problem. A centralized and a distributed formulation based on the Alternating Direction of Multipliers Method (ADMM) are investigated. The distributed formulation adopts a single-layer serial iterative architecture, which gains the benefits of reduced communication requirements and robustness against failures. The impacts of information updating sequences and responsibility parameters are discussed. We furthermore analyze the scalability of the proposed method. Simulation experiments of a CMVS navigating from different terminals in the Port of Rotterdam to inland waterways are carried out to illustrate the effectiveness of our method. The proposed method successfully steers the vessels from different origins to form a vessel train. Due to the effective communication, vessels can timely respond to the velocity changes that others make. After the formation is formed, the distances between vessels become constant. The results show the potential to use CMVSs for inland shipping with enhanced safety.  相似文献   

9.
The traditional approach to origin–destination (OD) estimation based on data surveys is highly expensive. Therefore, researchers have attempted to develop reasonable low-cost approaches to estimating the OD vector, such as OD estimation based on traffic sensor data. In this estimation approach, the location problem for the sensors is critical. One type of sensor that can be used for this purpose, on which this paper focuses, is vehicle identification sensors. The information collected by these sensors that can be employed for OD estimation is discussed in this paper. We use data gathered by vehicle identification sensors that include an ID for each vehicle and the time at which the sensor detected it. Based on these data, the subset of sensors that detected a given vehicle and the order in which they detected it are available. In this paper, four location models are proposed, all of which consider the order of the sensors. The first model always yields the minimum number of sensors to ensure the uniqueness of path flows. The second model yields the maximum number of uniquely observed paths given a budget constraint on the sensors. The third model always yields the minimum number of sensors to ensure the uniqueness of OD flows. Finally, the fourth model yields the maximum number of uniquely observed OD flows given a budget constraint on the sensors. For several numerical examples, these four models were solved using the GAMS software. These numerical examples include several medium-sized examples, including an example of a real-world large-scale transportation network in Mashhad.  相似文献   

10.
Diverging junctions are an important type of bottlenecks, which can reduce capacities and initiate and propagate traffic congestion in a road network. In this paper, we propose a kinematic wave theory for modeling dynamics of non-cooperative diverging traffic, in which traffic dynamics of vehicles to one direction are assumed to be independent of those to other directions instantaneously. During a short time interval, the kinematic wave model of diverging traffic is decoupled into a number of nonlinear resonant systems. From analytical solutions to the Riemann problem of a decoupled system, a new definition of partial traffic demand is introduced, so that diverging flows can be easily computed with the supply–demand method. Then a Cell Transmission Model is proposed to solve the kinematic wave model of diverging traffic by taking into account of the interactions among different traffic streams. Simulation results demonstrate that vehicles follow the First-In-First-Out principle in the long run, and the model converges when we decrease the cell and time-step sizes. In addition, it is shown that traffic streams to different directions segregate in a selfish manner, and the total throughput of a diverging junction is not maximized as in existing diverge models. In the future, more theoretical and empirical studies are needed for a better understanding of this and other diverge models.  相似文献   

11.
Multi-state supernetwork framework for the two-person joint travel problem   总被引:1,自引:0,他引:1  
Most travel behavior studies on route and mode choice focus only on an individual level. This paper adopts the concept of multi-state supernetworks to model the two-person joint travel problem (JTP). Travel is differentiated in terms of activity-vehicle-joint states, i.e. travel separately or jointly with which transport mode and with which activities conducted. In each state, route choice can be addressed given the state information and travel preference parameters. The joint travel pattern space is represented as a multi-state supernetwork, which is constructed by assigning the individual and joint networks to all possible states and connecting them via transfer links at joints where individuals can meet or depart. Besides route choice, the choices of where and when to meet, and which transport mode(s) to use can all be explicitly represented in a consistent fashion. A joint path through the supernetwork corresponds to a specific joint travel pattern. Then, JTP is reduced to an optimization problem to find the joint path with the minimum disutility. Three standard shortest path algorithm variants are proposed to find the optimal under different scenarios. The proposed framework further indicates the feasibility of multi-state supernetworks for addressing high dimensional problems and contributes to the design of a next generation of joint routing systems.  相似文献   

12.
Collision avoidance support systems (CASS) are nowadays one of the main fields of interest in the area of road transportation. Among the different approaches, those systems based on vehicle cooperation to avoid collisions present the most promising perspectives. Works available in the current literature have in common that the performance of such solutions strongly relies on the operation of two on-board subsystems: navigation and communications. However, the performance of these two subsystems is usually underestimated when the whole solution is evaluated. Collision avoidance support applications can be considered among the most critical vehicular services, and this is the reason why this paper focuses on the performance issues of these two subsystems. Main issues regarding navigation and communication performance are discussed along the paper, and a study of the literature in the field is completed with the evaluation of different system prototypes. Communication and navigation tests in real environments yield further conclusions discussed in the paper.  相似文献   

13.
To guarantee the road safety by avoiding collisions at the intersections is one of the major tasks of intelligent transportation systems (ITSs), which contributes to the minimal fatalities and property loss in crashes. This paper proposes an effective algorithm for infrastructure-cooperative intersection accident pre-warning system with the aid of vehicular communications. The proposed algorithm realizes accurate and efficient collision avoidances through five steps, i.e., defining variable, reasoning the vehicles evolution state, verifying safe driving behavior, assessing risk, and making decision. The critical factors are theoretically analyzed, and a vehicle state evolution model based on the Dynamic Bayesian Networks (DBNs) is established. The efficient risk assessment method based on identifying the dangerous driving behavior at intersection and different collision avoidance strategies are proposed according to the actual situation. Finally, extensive simulations are carried out to verify the performance of the proposal, and simulation results show that the proposed algorithm can effectively detect risk and accurately migrate the collision.  相似文献   

14.
A key issue in solving the difficult bus-bunching problem is being able to have reliable information about the location of the buses in the network. Most advanced public transport systems have buses with GPS devices, but the problem remains of how to send reliable information from the buses to the control unit, particularly when the density of buses is low, but there are high communications reliability requirements. As a solution, we study locating roadside units (RSUs) along the route. The buses, together with the RSUs, form a linear vehicular ad-hoc network (VANET). The RSUs are deployed so to maximize the probability of a vehicle communicating with an RSU in at most two hops. Previous studies on RSU location never took into account two hops, a conceptually different type of network. Rather, they consider that a vehicle is able to communicate only directly to an RSU (one hop), which is a well-known Maximum Covering Problem, in which one of the parties is always immobile, similar to a mobile phone network. Oppositely, our method solves the problem in which two of the intervening parties are mobile and communicate with each other, not possible to solve as a Maximum Covering Problem. We estimate the probability of a vehicle accessing successfully an RSU either directly or through the relay of another vehicle. This probability is later embedded in an integer programming formulation that optimizes the RSU locations for maximum communications likelihood.Numerical examples show that the connection probability is strongly dependent on the coverage ratio of the transmitters and receivers and relatively independent on the vehicle density on the network, when densities are low. Results also show that it is possible to find some cost-efficient solutions which result in a smaller number of RSUs located while assuring a connection probability of 0.9 or higher.  相似文献   

15.
Crash warning systems have been deployed in the high-end vehicle market segment for some time and are trickling down to additional motor vehicle industry segments each year. The motorcycle segment, however, has no deployed crash warning system to date. With the active development of next generation crash warning systems based on connected vehicle technologies, this study explored possible interface designs for motorcycle crash warning systems and evaluated their rider acceptance and effectiveness in a connected vehicle context. Four prototype warning interface displays covering three warning mode alternatives (auditory, visual, and haptic) were designed and developed for motorcycles. They were tested on-road with three connected vehicle safety applications - intersection movement assist, forward collision warning, and lane departure warning - which were selected according to the most impactful crash types identified for motorcycles. Combined auditory and haptic displays showed considerable promise for implementation. Auditory display is easily implemented given the adoption rate of in-helmet auditory systems. Its weakness of presenting directional information in this study may be remedied by using simple speech or with the help of haptic design, which performed well at providing such information and was also found to be attractive to riders. The findings revealed both opportunities and challenges of visual displays for motorcycle crash warning systems. More importantly, differences among riders of three major motorcycle types (cruiser, sport, and touring) in terms of rider acceptance of a motorcycle crash warning system were revealed. Based on the results, recommendations were provided for an appropriate crash warning interface design for motorcycles and riders in a connected vehicle environment.  相似文献   

16.
One-way station-based carsharing systems allow users to return a rented car to any designated station, which could be different from the origin station. Existing research has been mainly focused on the vehicle relocation problem to deal with the travel demand fluctuation over time and demand imbalance in space. However, the strategic planning of the stations’ location and their capacity for one-way carsharing systems has not been well studied yet, especially when considering vehicle relocations simultaneously. This paper presents a Mixed-integer Non-linear Programming (MINLP) model to solve the carsharing station location and capacity problem with vehicle relocations. This entails considering several important components which are for the first time integrated in the same model. Firstly, relocation operations and corresponding relocation costs are taken into consideration to address the imbalance between trip requests and vehicle availability. Secondly, the flexible travel demand at various time steps is taken as the input to the model avoiding deterministic requests. Thirdly, a logit model is constructed to represent the non-linear demand rate by using the ratio of carsharing utility and private car utility. To solve the MINLP model, a customized gradient algorithm is proposed. The application to the SIP network in Suzhou, China, demonstrates that the algorithm can solve a real world large scale problem in reasonable time. The results identify the pricing and parking space rental costs as the key factors influencing the profitability of carsharing operators. Also, the carsharing station location and fleet size impact the vehicle relocation and carsharing patronage.  相似文献   

17.
This paper addresses the problem of the hybrid control of autonomous vehicles driving on automated highways. Vehicles are autonomous, so they do not communicate with each other nor with the infrastructure. Two problems have to be dealt with: a vehicle driving in a single-lane highway must never collide with its leading vehicle; and a vehicle entering the highway at a designated entry junction must be able to merge from the merging lane to the main lane, again without any collision. To solve these problems, we equip each vehicle with a hybrid controller, consisting of several continuous control laws embedded inside a finite state automaton. The automaton specifies when a given vehicle must enter the highway, merge into the main lane, yield to other vehicles, exit from the highway, and so on. The continuous control laws specify what acceleration the vehicle must have in order to avoid collisions with nearby vehicles. By carefully designing these control laws and the conditions guarding the automaton transitions, we are able to demonstrate three important results. First, we state the initial conditions guaranteeing that a following vehicle never collides with its leading vehicle. Second, we extend this first result to a lane of autonomous vehicles. Third, we prove that if all the vehicles are equipped with our hybrid controller, then no collision can ever occur, and all vehicles either merge successfully or are forced to drop out when they reach the end of their merging lane. Finally, we show the outcome of a highway microsimulation modelled after the Katy Corridor near Houston, Texas: our single-lane highway can accommodate 4000 vehicles per hour with neither drop-outs nor traffic congestion. It is entirely programmed in SHIFT, a hybrid systems simulation language developed at UC Berkeley by the PATH group. This shows that SHIFT is a well suited language for designing safe control laws for autonomous highway systems, among others.  相似文献   

18.
Advanced Automatic Crash Notification (AACN) systems, capable of predicting post-crash injury severity and subsequent automatic transfer of injury assessment data to emergency medical services, may significantly improve the timeliness, appropriateness, and efficacy of care provided. The estimation of injury severity based on statistical field data, as incorporated in current AACN systems, lack specificity and accuracy to identify the risk of life-threatening conditions. To enhance the existing AACN framework, the goal of the current study was to develop a computational methodology to predict risk of injury in specific body regions based on specific characteristics of the crash, occupant and vehicle. The computational technique involved multibody models of the vehicle and the occupant to simulate the case-specific occupant dynamics and subsequently predict the injury risk using established physical metrics. To demonstrate the computational-based injury prediction methodology, three frontal crash cases involving adult drivers in passenger cars were extracted from the US National Automotive Sampling System Crashworthiness Data System. The representative vehicle model, anthropometrically scaled model of the occupant and kinematic information related to the crash cases, selected at different severities, were used for the blinded verification of injury risk estimations in five different body regions. When compared to existing statistical algorithms, the current computational methodology is a significant improvement toward post-crash injury prediction specifically tailored to individual attributes of the crash. Variations in the initial posture of the driver, analyzed as a pre-crash variable, were shown to have a significant effect on the injury risk.  相似文献   

19.
Variable speed limit systems where variable message signs are used to show speed limits adjusted to the prevailing road or traffic conditions are installed on motorways in many countries. The objectives of variable speed limit system installations are often to decrease the number of accidents and to increase traffic efficiency. Currently, there is an interest in exploring the potential of cooperative intelligent transport systems including communication between vehicles and/or vehicles and the infrastructure. In this paper, we study the potential benefits of introducing infrastructure to vehicle communication, autonomous vehicle control and individualized speed limits in variable speed limit systems. We do this by proposing a cooperative variable speed limit system as an extension of an existing variable speed limit system. In the proposed system, communication between the infrastructure and the vehicles is used to transmit variable speed limits to upstream vehicles before the variable message signs become visible to the drivers. The system is evaluated by the means of microscopic traffic simulation. Traffic efficiency and environmental effects are considered in the analysis. The results of the study show benefits of the infrastructure to vehicle communication, autonomous vehicle control and individualized speed limits for variable speed limit systems in the form of lower acceleration rates and thereby harmonized traffic flow and reduced exhaust emissions.  相似文献   

20.
Traffic congestion and energy issues have set a high bar for current ground transportation systems. With advances in vehicular communication technologies, collaborations of connected vehicles have becoming a fundamental block to build automated highway transportation systems of high efficiency. This paper presents a distributed optimal control scheme that takes into account macroscopic traffic management and microscopic vehicle dynamics to achieve efficiently cooperative highway driving. Critical traffic information beyond the scope of human perception is obtained from connected vehicles downstream to establish necessary traffic management mitigating congestion. With backpropagating traffic management advice, a connected vehicle having an adjustment intention exchanges control-oriented information with immediately connected neighbors to establish potential cooperation consensus, and to generate cooperative control actions. To achieve this goal, a distributed model predictive control (DMPC) scheme is developed accounting for driving safety and efficiency. By coupling the states of collaborators in the optimization index, connected vehicles achieve fundamental highway maneuvers cooperatively and optimally. The performance of the distributed control scheme and the energy-saving potential of conducting such cooperation are tested in a mixed highway traffic environment by the means of microscopic simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号