首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Ramp metering has emerged as an effective freeway control measure to ensure efficient freeway operations. A number of algorithms have been developed in recent years to ensure an effective use of ramp metering. As the performance of ramp metering depends on various factors (e.g. traffic volume, downstream traffic conditions, queue override policy etc), these algorithms should be evaluated under a wide range of traffic conditions to check their applicability and performance and to ensure their successful implementation. In view of the expenses of and confounding effects in field testing, simulation plays an important role in the evaluation of such algorithms. This paper presents an evaluation study of two ramp metering algorithms: ALINEA and FLOW. ALINEA is a local control algorithm and FLOW is an area wide coordinated algorithm. The purpose of the study is to use microscopic simulation to evaluate systematically how the level of traffic demand, queue spillback handling policy and downstream bottleneck conditions affect the performance of the algorithms. It is believed that these variables have complex interactions with ramp metering. MITSIM microscopic traffic simulator is used to perform the empirical study. The study consists of two stages. In the first stage, key input parameters for the algorithms were identified and calibrated. The calibrated parameters were then used for the second stage, where the performance of the algorithms were compared with respect to three traffic variables mentioned above using an orthogonal fraction of experiments. Regression analysis was used to identify the impacts of some of the interactions among experimental factors on the algorithms' performance, which is not otherwise possible with a tabular analysis. These results provide insights which may be helpful for design and calibration of more efficient ramp control algorithms.  相似文献   

2.
Measurements taken downstream of freeway/on-ramp merges have previously shown that discharge flow diminishes when a merge becomes an isolated bottleneck. By means of observation and experiment, we show here that metering an on-ramp can recover the higher discharge flow at a merge and thereby increase the merge capacity. Detailed observations were collected at a single merge using video. These data revealed that the reductions in discharge flow are triggered by a queue that forms near the merge in the freeway shoulder lane and then spreads laterally, as drivers change lanes to maneuver around slow traffic. Our experiments show that once restrictive metering mitigated this shoulder lane queue, high outflows often returned to the median lane. High merge outflows could be restored in all freeway lanes by then relaxing the metering rate so that inflows from the on-ramp increased. Although outflows recovered in this fashion were not sustained for periods greater than 13 min, the findings are the first real evidence that ramp metering can favorably affect the capacity of an isolated merge. Furthermore, these findings point to control strategies that might generate higher outflows for more prolonged periods and increase merge capacity even more. Finally, the findings uncover details of merge operation that are essential for developing realistic theories of merging traffic.  相似文献   

3.
This paper presents a fuzzy controller for freeway ramp metering, which uses rules of the form: IF “freeway condition” THEN “control action.” The controller has been designed to consider varied levels of congestion, a downstream control area, changing occupancy levels, upstream flows, and a distributed detector array in its rule base. Through fuzzy implication, the inference of each rule is used to the degree to which the condition is true. Using a dynamic simulation model of conditions0fj at the San Francisco-Oakland Bay Bridge, the action of the fuzzy controller is compared to the existing “crisp” control scheme, and an idealized controller. Tests under a variety of scenarios with different incident locations and capacity reductions show that the fuzzy controller is able to extract 40 to 100% of the possible savings in passenger-hours. In general, the fuzzy algorithm displays smooth and rapid response to incidents, and significantly reduces the minute-miles of congestion.  相似文献   

4.
This study evaluates the expected benefits of using the ALINEA ramp metering algorithm as a method for real-time safety improvement on an urban freeway. The objective of this research is to use ramp metering to produce a significant decrease in the risk of crashes on the freeway while avoiding any significant adverse effects on operation. This is achieved by simulating the freeway during the congested period in micro-simulation and testing various ramp metering configurations to determine which provides the best results. Statistical measures developed for the same stretch of freeway using loop detector data are used to quantify the risk of crashes as well as the benefits in each of the alternative strategies. The study concludes that there are significant benefits in metering multiple ramps when the feedback ramp metering algorithm is implemented at multiple locations. It was found that increasing the number of metered on-ramps produces increasing safety benefits. Also, a shorter cycle length for each of the meters and a higher critical occupancy value leads to better results.  相似文献   

5.
This study aims to determine whether ramp meters increase the capacity of active freeway bottlenecks. The traffic flow characteristics at 27 active bottlenecks in the Twin Cities have been studied for seven weeks without ramp metering and seven weeks with ramp metering. A methodology for systematically identifying active freeway bottlenecks in a metropolitan area is proposed, which relies on two occupancy threshold values and is compared to an established diagnostic method – transformed cumulative count curves. A series of hypotheses regarding the relationships between ramp metering and the capacity of active bottlenecks are developed and tested against empirical traffic data. It is found that meters increase the bottleneck capacity by postponing and sometimes eliminating bottleneck activations, accommodating higher flows during the pre-queue transition period, and increasing queue discharge flow rates after breakdown. Results also suggest that flow drops after breakdown and the percentage flow drops at various bottlenecks follow a normal distribution. The implications of these findings on the design of efficient ramp control strategies, as well as future research directions, are discussed.  相似文献   

6.
Freeway‐to‐freeway connector metering is a cost‐effective and proven freeway management strategy for relieving recurrent congestion. However, one of the critical challenges in design and operation of freeway‐to‐freeway connector metering is the lack of up‐to‐date queue storage length design guidance. In this study, it was found that ramp queue is dynamically related to the metering rate, on‐ramp demand, and traffic flow arrival pattern. Hence, simply using an average demand cannot provide accurate queue length estimation and is also not suitable for queue storage design where the maximum or a percentile queue length is generally used. A mesoscopic queue length simulation model was developed based on the input–output method for estimating queue lengths under various demand‐to‐capacity ratio scenarios. Simulation results indicate that for under‐saturated situations, the ramp queue may exist temporally due to the random short‐term surge of traffic arrivals, and the exponential function could best capture the relationship between queue length and demand‐to‐capacity ratio. For over‐saturated situations, the ramp queue tends to prolong linearly with the demand‐to‐capacity ratio. Based on the simulation, it was recommended that queue storage length be designed as 4.3% of on‐ramp demand when demand is lower than 1200 vph or 2.3% when demand is between 1200 and 2400 vph. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The paper proposes a first-order macroscopic stochastic dynamic traffic model, namely the stochastic cell transmission model (SCTM), to model traffic flow density on freeway segments with stochastic demand and supply. The SCTM consists of five operational modes corresponding to different congestion levels of the freeway segment. Each mode is formulated as a discrete time bilinear stochastic system. A set of probabilistic conditions is proposed to characterize the probability of occurrence of each mode. The overall effect of the five modes is estimated by the joint traffic density which is derived from the theory of finite mixture distribution. The SCTM captures not only the mean and standard deviation (SD) of density of the traffic flow, but also the propagation of SD over time and space. The SCTM is tested with a hypothetical freeway corridor simulation and an empirical study. The simulation results are compared against the means and SDs of traffic densities obtained from the Monte Carlo Simulation (MCS) of the modified cell transmission model (MCTM). An approximately two-miles freeway segment of Interstate 210 West (I-210W) in Los Ageles, Southern California, is chosen for the empirical study. Traffic data is obtained from the Performance Measurement System (PeMS). The stochastic parameters of the SCTM are calibrated against the flow-density empirical data of I-210W. Both the SCTM and the MCS of the MCTM are tested. A discussion of the computational efficiency and the accuracy issues of the two methods is provided based on the empirical results. Both the numerical simulation results and the empirical results confirm that the SCTM is capable of accurately estimating the means and SDs of the freeway densities as compared to the MCS.  相似文献   

8.
This paper presents a new approach to time-of-day control. While time-of-day control strategies presented up-to-now are only optimal under steady-state conditions, the control algorithm derived in this paper takes into account the evolution of traffic flow according to the time delay between a volume change at a ramp and its subsequent disturbance at a freeway point downstream. The new control strategy is based on the solution of a linear programming optimization problem and makes freeway volume hold the capacity constraints for the total time of control operation. In order to reduce the computational effort a simplified version of the new algorithm is also discussed. Simulation results obtained by use of two different traffic flow models show that control derived through the new algorithm can avoid congestion and ensure operation with peak performance even if a steady-state condition is never attained.  相似文献   

9.
This study focuses on how to use multiple data sources, including loop detector counts, AVI Bluetooth travel time readings and GPS location samples, to estimate macroscopic traffic states on a homogeneous freeway segment. With a generalized least square estimation framework, this research constructs a number of linear equations that map the traffic measurements as functions of cumulative vehicle counts on both ends of a traffic segment. We extend Newell’s method to solve a stochastic three-detector problem, where the mean and variance estimates of cell-based density and flow can be analytically derived through a multinomial probit model and an innovative use of Clark’s approximation method. An information measure is further introduced to quantify the value of heterogeneous traffic measurements for improving traffic state estimation on a freeway segment.  相似文献   

10.
The paper presents a unified macroscopic model-based approach to real-time freeway network traffic surveillance as well as a software tool RENAISSANCE that has been recently developed to implement this approach for field applications. RENAISSANCE is designed on the basis of stochastic macroscopic freeway network traffic flow modeling, extended Kalman filtering, and a number of traffic surveillance algorithms. Fed with a limited amount of real-time traffic measurements, RENAISSANCE enables a number of freeway network traffic surveillance tasks, including traffic state estimation and short-term traffic state prediction, travel time estimation and prediction, queue tail/head/length estimation and prediction, and incident alarm. The traffic state estimation and prediction lay the operating foundation of RENAISSANCE since RENAISSANCE bases the other traffic surveillance tasks on its traffic state estimation or prediction results. The paper first introduces the utilized stochastic macroscopic freeway network traffic flow model and a real-time traffic measurement model, upon which the complete dynamic system model of RENAISSANCE is established with special attention to the handling of some important model parameters. The algorithms for the various traffic surveillance tasks addressed are described along with the functional architecture of the tool. A simulation test was conducted via application of RENAISSANCE to a hypothetical freeway network example with a sparse detector configuration, and the testing results are presented in some detail. Final conclusions and future work are outlined.  相似文献   

11.
The level of service (LOS) concept in the Highway Capacity Manual has been used as a qualitative measure representing freeway operational conditions for over 35 years. One key element that has not been adequately addressed is how road users perceive LOS. This exploratory research examines road-user perceptions of freeway LOS by presenting study participants with a series of video clips of various traffic conditions (taken from cameras on overpasses to allow a complete view of the traffic stream) and asking them their perceptions of LOS. A random effects ordered probability model is then used to statistically link participant-recorded perceptions of LOS with measurable traffic conditions (speed, density, flow, percentage of trucks, vehicle headways) and participant characteristics. The findings suggest that the Highway Capacity Manual’s use of traffic density as a single performance measure for LOS does not accurately reflect road-user perceptions. The statistical analysis shows that a number of attributes besides traffic density determine public perceptions of LOS and that these perceptions vary depending on both traffic conditions and road-user characteristics.  相似文献   

12.
This paper documents the development of a simple method for identifying and/or predicting freeway congestion using single loop detection systems. The proposed algorithm is simple and easy to incorporate into most freeway management systems. The Washington State Department of Transportation's Traffic Systems Management Center (TSMC) sponsored the original study. The investigation also led to a recommendation to replace the original TSMC definition of congestion or forced flow conditions with a more reliable indicator. Although, the TSMC has recently implemented a more advanced prediction system based on fuzzy set theory and neural networks to further identify patterns and rules for ramp metering strategies, the findings presented here continue to be constructive to freeway managers looking for quick and easy analyses that rely solely on single‐loop detection systems. The Seattle Area freeway study section used for the original study was the portion of mainline 1–5 northbound starting at the downtown Seattle Station 108 and ending at the Mountlake Terrace Station 193. Several days' worth of volume and lane‐occupancy data were collected for the afternoon time period from 2:30 p.m. to 6:30 p.m. Time intervals of 20 seconds were chosen for each data collection period. Important products of this research include the following:
  • simple, and more reliable criterion for the definition of “bottleneck” or forced flow conditions than that originally used by the TSMC.
  • simple, and reliable criterion for predicting impending “bottlenecks” or forced flow conditions.
  • A proposed variable for improved selection of the appropriate metering rate. (Further analysis of the use of this variable for determining metering rates is recommended for future studies.
The proposed criteria are simple and easy to incorporate into current freeway management computer systems. Further investigation of freeway performance measurement using volume and occupancy data obtained from single‐loop systems is currently being performed.  相似文献   

13.
Currently most optimization methods for urban transport networks (i) are suited for networks with simplified dynamics that are far from real-sized networks or (ii) apply decentralized control, which is not appropriate for heterogeneously loaded networks or (iii) investigate good-quality solutions through micro-simulation models and scenario analysis, which make the problem intractable in real time. In principle, traffic management decisions for different sub-systems of a transport network (urban, freeway) are controlled by operational rules that are network specific and independent from one traffic authority to another. In this paper, the macroscopic traffic modeling and control of a large-scale mixed transportation network consisting of a freeway and an urban network is tackled. The urban network is partitioned into two regions, each one with a well-defined Macroscopic Fundamental Diagram (MFD), i.e. a unimodal and low-scatter relationship between region density and outflow. The freeway is regarded as one alternative commuting route which has one on-ramp and one off-ramp within each urban region. The urban and freeway flow dynamics are formulated with the tool of MFD and asymmetric cell transmission model, respectively. Perimeter controllers on the border of the urban regions operating to manipulate the perimeter interflow between the two regions, and controllers at the on-ramps for ramp metering are considered to control the flow distribution in the mixed network. The optimal traffic control problem is solved by a Model Predictive Control (MPC) approach in order to minimize total delay in the entire network. Several control policies with different levels of urban-freeway control coordination are introduced and tested to scrutinize the characteristics of the proposed controllers. Numerical results demonstrate how different levels of coordination improve the performance once compared with independent control for freeway and urban network. The approach presented in this paper can be extended to implement efficient real-world control strategies for large-scale mixed traffic networks.  相似文献   

14.
This work conducts a comprehensive investigation of traffic behavior and characteristics during freeway ramp merging under congested traffic conditions. On the Tokyo Metropolitan Expressway, traffic congestion frequently occurs at merging bottleneck sections, especially during heavy traffic demand. The Tokyo Metropolitan Expressway public corporation, generally applies different empirical strategies to increase the flow rate and decrease the accident rate at the merging sections. However, these strategies do not rely either on any behavioral characteristics of the merging traffic or on the geometric design of the merging segments. There have been only a few research publications concerned with traffic behavior and characteristics in these situations. Therefore, a three‐year study is undertaken to investigate traffic behavior and characteristics during the merging process under congested situations. Extensive traffic data capturing a wide range of traffic and geometric information were collected using detectors, videotaping, and surveys at eight interchanges in Tokyo Metropolitan Expressway. Maximum discharged flow rate from the head of the queue at merging sections in conjunction with traffic and geometric characteristics were analyzed. In addition, lane changing maneuver with respect to the freeway and ramp traffic behaviors were examined. It is believed that this study provides a thorough understanding of the freeway ramp merging dynamics. In addition, it forms a comprehensive database for the development and implementation of congestion management techniques at merging sections utilizing Intelligent Transportation System.  相似文献   

15.
An approach based on cell transmission model (CTM) is proposed to estimate the impact of variable free-flow speeds (FFS) on the performance of a freeway system. Based on the basic CTM, four typical freeway control strategies consisting of non control, local ramp metering, coordinated ramp metering and global control are first formulated. Then the method of adjusting model parameters to the changed free-flow speeds is presented. Among the adjustments, an experimental function based on Fan and Seibold (2014) is proposed to change the jam density. Several useful measures are defined to estimate and compare the performances of different freeways. The following three main observations are obtained from numerical experiments. (a) With the gradually increasing FFS, the throughput of freeway will increase at the beginning and then change to decrease. (b) With the increasing FFS, the average delay of vehicles will decrease at the beginning and then change to increase. (c) A series of free-flow speeds associate with the best performance of freeway. These observations are theoretically analyzed through investigating the location and capacity of bottleneck. Study shows that in general the actual bottleneck capacity will increase at the beginning and then change to decrease with the continually increasing FFS. In view of the positive correlation between traffic delay and bottleneck capacity, the theoretical analysis confirms the numerical observations. The findings of this study can deepen the understanding of freeway systems and help management agents adopt proper measures to improve the performance of the whole system.  相似文献   

16.
A simple model of traffic flow is used to analyze the spatio-temporal distribution of flow and density on closed-loop homogeneous freeways with many ramps, which produce inflows and allow outflows. As we would expect, if the on-ramp demand is space-independent then this distribution tends toward uniformity in space if the freeway is either: (i) uncongested; or (ii) congested with queues on its on-ramps and enough inflow to cause the average freeway density to increase with time. In all other cases, however, including any recovery phase of a rush hour where the freeway’s average density declines, the distribution of flow and density quickly becomes uneven. This happens even under conditions of perfect symmetry, where the percentage of vehicles exiting at every off ramp is the same. The flow-density deviations from the average are shown to grow exponentially in time and propagate backwards in space with a fixed wave speed. A consequence of this type of instability is that, during recovery, gaps of uncongested traffic will quickly appear in the unevenly congested stream, reducing average flow. This extends the duration of recovery and invariably creates clockwise hysteresis loops on scatter-plots of average system flow vs. density during any rush hour that oversaturates the freeway. All these effects are quantified with formulas and verified with simulations. Some have been observed in real networks. In a more practical vein, it is also shown that the negative effects of instability diminish (i.e., freeway flows increase) if (a) some drivers choose to exit the freeway prematurely when it is too congested and/or (b) freeway access is regulated in a certain traffic-responsive way. These two findings could be used to improve the algorithms behind VMS displays for driver guidance (finding a), and on-ramp metering rates (finding b).  相似文献   

17.
This work focuses on developing a variety of strategies for alleviating congestion at freeway merging points as well as improving the safety of these points. On the Tokyo Metropolitan Expressway, traffic congestion frequently occurs at merging bottleneck sections, especially during heavy traffic demand. The Tokyo Metropolitan Expressway public corporation, generally applies different empirical strategies to increase the flow rate and decrease the accident rate at the merging sections. However, these strategies do not rely either on any behavioral characteristic of the merging traffic or on the geometric design of the merging segments. There have been only a few research publications concerned with traffic behavior and characteristics in these situations. Therefore, a three‐year extensive study has been undertaken to investigate traffic behavior and characteristics during the merging process under congested situations in order to design safer and less congested merging points as well as to apply more efficient control at these bottleneck sections. Two groups of strategies were investigated in this study. The First group was related to the traffic characteristics, and the second group to the geometric characteristics. In the first group, the control strategies related to closure of freeway and ramp lanes as well as lane‐changing maneuver restriction were investigated through a simulation program, detector data, and field experiment. In the second group, the angle of convergence of the ramp with the freeway in relation to merging capacity was analyzed using a simulation program. Results suggested the potential benefits of using proposed strategies developed in this work and can serve as initial guidance for the reduction of delay and improvement of safety under congested traffic conditions.  相似文献   

18.
Conventional vehicle detectors are capable of monitoring discrete points along the freeway but do not provide information about conditions on the link between detectors. Knowledge of conditions on the link is useful to operating agencies for enabling timely decisions in response to various delay causing events and hence to reduce the resulting congestion of the freeway system. This paper presents an approach that matches vehicle measurements between detector stations to provide information on the conditions over the link between the detectors rather than relying strictly on the aggregate point measurements from the detectors. In particular this work reidentifies measurements from distinct vehicles using the existing loop detector infrastructure. Here the distinct vehicles are the long vehicles, but depending on the vehicle population or type of detector used, one might chose to use some other reproducible feature.This new methodology represents an important advancement over preceding loop based vehicle reidentification, as illustrated herein, it enables vehicle reidentification across a major diverge and a major merge. The examples include a case where the reidentification algorithm responded to delay between two detector stations an hour before the delay was locally observable at either of the stations used for reidentification. While previous loop based reidentification work was limited to dual loop detectors, the present effort also extends the methodology to single loop detectors; thereby making it more widely applicable. Although the research uses loop detector data, the algorithm would be equally applicable to data obtained from many other traffic detectors that provide reproducible vehicle features.  相似文献   

19.
ABSTRACT

Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases.  相似文献   

20.
Frequently implemented at freeway accesses to streamline traffic, ramp-metering control strategy is often implemented during rush hours in heavily congested areas. This paper presents a novel ramp-metering control model capable of optimizing mainline traffic by providing metering rates for accesses within the control segments. Based on Payne's continuum traffic stream model, a linear dynamic model with a quadratic objective function is constructed for integrated-responsive ramp-metering control. Incorporating on-line origin–destination (OD) estimation of co-ordinated interchanges into the proposed model increases efficiency of the control. In addition, an iterative algorithm is proposed to obtain the optimal solution. Simulation results demonstrate the robustness of the proposed model and its ability to streamline freeway traffic while avoiding traffic congestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号