首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Flex‐route transit brings together the low cost operability of fixed‐route transit with the flexibility of demand responsive transit, and in recent years, it has become the most popular type of flexible transit service. In this paper, a methodology is proposed to help planners make better decisions regarding the choice between a conventional fixed‐route and a flex‐route policy for a specific transit system with a varying passenger demand. A service quality function is developed to measure the performance of transit systems, and analytical modeling and simulations are used to reproduce transit operation under the two policies. To be closer to reality, two criteria are proposed depending on the processing of rejected requests in the assessment of the service quality function for flex‐route services. In various scenarios, critical demand densities, which represent the switching points between the two competing policies, are derived in a real‐world transit service according to the two criteria. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Feeder lines are one of the most often used types of flexible transit services connecting a service area to a major transit network through a transfer point. They often switch operations between a demand responsive and a fixed-route policy. In designing and running such systems, the identification of the condition justifying the operating switch is often hard to properly evaluate. In this paper, we propose an analytical model and solution of the problem to assist decision makers and operators in their choice. By employing continuous approximations, we derive handy but powerful closed-form expressions to estimate the critical demand densities, representing the switching point between the competing operating policies. Based on the results of one-vehicle and two-vehicle operations for various scenarios, in comparison to values generated from simulation, we verify the validity of our analytical modeling approach.  相似文献   

3.
To improve the accessibility of transit system in urban areas, this paper presents a flexible feeder transit routing model that can serve irregular‐shaped networks. By integrating the cost efficiency of fixed‐route transit system and the flexibility of demand responsive transit system, the proposed model is capable of letting operating feeder busses temporarily deviate from their current route so as to serve the reported demand locations. With an objective of minimizing total bus travel time, a new operational mode is then proposed to allow busses to serve passengers on both street sides. In addition, when multiple feeder busses are operating in the target service area, the proposed model can provide an optimal plan to locate the nearest one to response to the demands. A three‐stage solution algorithm is also developed to yield meta‐optimal solutions to the problem in a reasonable amount of time by transforming the problem into a traveling salesman problem. Numerical studies have demonstrated the effectiveness of the proposed model as well as the heuristic solution approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The environmental performance of public transport plays a key role in improving air quality in urban areas. An important way of improving existing transit services is to use innovative propulsive systems; however, this needs considerable financial resources that are not always available. Here we assess how the organizational form of the transit system may impact the environment relying on a new methodology that permits comparisons in terms of distance traveled between a traditional fixed-route and a demand responsive transit service. We apply an emission model to find the least polluting transit system under a broad range of scenarios with different road networks, service quality levels and demand densities. Results indicate that demand responsive transit services minimize emissions for high quality service level and low demand density scenarios. Furthermore, the possibility of employing smaller vans with lower emission factors guarantees additional substantial benefits in terms of atmospheric pollution for demand responsive transit services, thereby giving them a competitive advantage in virtually every case.  相似文献   

5.
Transit service contracting has responded to fiscal and financial woes of public transit agencies as the most uniquely attractive cost‐saving strategy at present. Most transit service contracting, however, has been in the traditional provision of entire fixed route bus service or commuter express bus service, and exclusive demand responsive service for the general public or for special disadvantaged population groups such as the elderly and/or the handicapped. This paper presents a new module in transit service contracting whereby the public and private operators jointly provide the peak service on the same route and at the same time. While the public agency provides the base demand of the service, the private provider provides the excess demand, both following the same schedules and similar service arrangements. In this paper, proposed service arrangements, costing and contracting procedures are discussed. It is also reported that substantial cost savings ranging from 32 to 57% with an average savings of 48% can be achieved if the excess peak hour bus transit service on highly peaked routes in public transit agencies is contracted to competing private operator(s).  相似文献   

6.
Information produced by travel demand models plays a large role decision making in many metropolitan areas, and San Francisco is no exception. Being a transit first city, one of the most common uses for San Francisco??s travel model SF-CHAMP is to analyze transit demand under various circumstances. SF-CHAMP v 4.1 (Harold) is able to capture the effects of several aspects of transit provision including headways, stop placement, and travel time. However, unlike how auto level of service in a user equilibrium traffic assignment is responsive to roadway capacity, SF-CHAMP Harold is unable to capture any benefit related to capacity expansion, crowding??s effect on travel time nor or any of the real-life true capacity limitations. The failure to represent these elements of transit travel has led to significant discrepancies between model estimates and actual ridership. Additionally it does not allow decision-makers to test the effects of policies or investments that increase the capacity of a given transit service. This paper presents the framework adopted into a more recent version of SF-CHAMP (Fury) to represent transit capacity and crowding within the constraints of our current modeling software.  相似文献   

7.
Flex-route transit, which combines the advantages of fixed-route transit and demand-responsive transit, is one of the most promising options in low-demand areas. This paper proposes a slack arrival strategy to reduce the number of rejected passengers and idle time at checkpoints resulting from uncertain travel demand. This strategy relaxes the departure time constraints of the checkpoints that do not function as transfer stations. A system cost function that includes the vehicle operation cost and customer cost is defined to measure system performance. Theoretical and simulation models are constructed to test the benefits of implementing the slack arrival strategy in flex-route transit under expected and unexpected demand levels. Experiments over a real-life flex-route transit service show that the proposed slack arrival strategy could improve the system performance by up to 40% with no additional operating cost. The results demonstrate that the proposed strategy can help transit operators provide more cost-efficient flex-route transit services in suburban and rural areas.  相似文献   

8.
The first analytical stochastic and dynamic model for optimizing transit service switching is proposed for “smart transit” applications and for operating shared autonomous transit fleets. The model assumes a region that requires many-to-one last mile transit service either with fixed-route buses or flexible-route, on-demand buses. The demand density evolves continuously over time as an Ornstein-Uhlenbeck process. The optimal policy is determined by solving the switching problem as a market entry and exit real options model. Analysis using the model on a benchmark computational example illustrates the presence of a hysteresis effect, an indifference band that is sensitive to transportation system state and demand parameters, as well as the presence of switching thresholds that exhibit asymmetric sensitivities to transportation system conditions. The proposed policy is computationally compared in a 24-hour simulation to a “perfect information” set of decisions and a myopic policy that has been dominant in the flexible transit literature, with results that suggest the proposed policy can reduce by up to 72% of the excess cost in the myopic policy. Computational experiments of the “modular vehicle” policy demonstrate the existence of an option premium for having flexibility to switch between two vehicle sizes.  相似文献   

9.
As an innovative combination of conventional fixed-route transit and demand responsive service, flex-route transit is currently the most popular type of flexible transit services. This paper proposes a dynamic station strategy to improve the performance of flex-route transit in operating environments with uncertain travel demand. In this strategy, accepted curb-to-curb stops are labeled as temporary stations, which can be utilized by rejected requests for their pick-up and drop-off. The user cost function is defined as the performance measure of transit systems. Analytical models and simulations are constructed to test the feasibility of implementing the dynamic station strategy in flex-route transit services. The study over a real-life flex-route service indicates that the proposed dynamic station strategy could reduce the user cost by up to 30% without any additional operating cost, when an unexpectedly high travel demand surpasses the designed service capacity of deviation services.  相似文献   

10.
This paper defines a novel street Connectivity Indicator (C.I.) to predict transit performance by identifying the role that street network connectivity plays in influencing the service quality of demand responsive feeder transit services. This new C.I. definition is dependent upon the expected shortest path between any two nodes in the network, includes spatial features and transit demand distribution information and is easy to calculate for any given service area. Simulation analyses over a range of networks have been conducted to validate the new definition. Results show a desirable monotonic relationship between transit performance and the proposed C.I., whose values are directly proportional and therefore good predictors of the transit performance, outperforming other available indicators, typically used by planners.  相似文献   

11.
The general lack of first/last mile connectivity is one of the main challenges faced by today’s public transit. One of the possible actions towards a solution to this problem is the planning, design and implementation of efficient feeder transit services. This paper develops an analytical model which allows for an easy computation of near optimal terminal-to-terminal cycle length of a demand responsive feeder service to maximize service quality provided to customers, defined as the inverse of a weighted sum of waiting and riding times. The model estimates the recommended cycle length by only plugging in geometrical parameters and demand data, without relying on extensive simulation analyses or rule of thumbs. Simulation experiments and comparisons with real services validate our model, which would allow planners, decision makers and practitioners to quickly identify the best feeder transit operating design of any given residential area.  相似文献   

12.
Transit agencies frequently upgrade rail tracks to bring the system to a state of good repair (SGR) and to improve the speed and reliability of urban rail transit service. For safety during construction, agencies establish slow zones in which trains must reduce speed. Slow zones create delays and schedule disruptions that result in customer dissatisfaction and discontinued use of transit, either temporarily or permanently. While transit agencies are understandably concerned about the possible negative effects of slow zones, empirical research has not specifically examined the relationship between slow zones and ridership. This paper partially fills that gap. Using data collected from the Chicago Transit Authority (CTA) Customer Experience Survey, CTA Slow Zone Maps, and, the Automatic Fare Collection System (AFC), it examines whether recurring service delays due to slow zones affect transit rider behavior and if the transit loyalty programs, such as smart card systems, increase or decrease rider defections. Findings suggest that slow zones increase headway deviation which reduces ridership. Smart card customers are more sensitive to slow zones as they are more likely to stop using transit as a result of delay. The findings of this paper have two major policy implications for transit agencies: (1) loyalty card users, often the most reliable source of revenue, are most at risk for defection during construction and (2) it is critical to minimize construction disruptions and delays in the long run by maintaining state of good repair. The results of this paper can likely be used as the basis for supporting immediate funding requests to bring the system to an acceptable state of good repair as well as stimulating ideas about funding reform for transit.  相似文献   

13.
This paper assesses the demand for a flexible, demand-adaptive transit service, using the Chicago region as an example. We designed and implemented a stated-preference survey in order to (1) identify potential users of flexible transit, and (2) inform the service design of the flexible transit mode. Multinomial logit, mixed-logit, and panel mixed-logit choice models were estimated using the data obtained from the survey. The survey instrument employed a dp-efficient design and the Google Maps API to capture precise origins and destinations in order to create realistic choice scenarios. The stated-preference experiments offered respondents a choice between traditional transit, car, and a hypothetical flexible transit mode. Wait time, access time, travel time, service frequency, cost, and number of transfers varied across the choice scenarios. The choice model results indicate mode-specific values of in-vehicle travel time ranging between $16.3 per hour (car) and $21.1 per hour (flexible transit). The estimated value of walking time to transit is $25.9 per hour. The estimated value of waiting time at one’s point of origin for a flexible transit vehicle is $11.3 per hour; this value is significantly lower than the disutility typically associated with waiting at a transit stop/station indicating that the ‘at-home’ pick-up option of flexible transit is a highly desirable feature. The choice model results also indicate that respondents who use active-transport modes or public transit for their current commute trip, or are bikeshare members, were significantly more likely to choose flexible and traditional transit than car commuters in the choice experiments. The implications of these and other relevant model results for the design and delivery of flexible, technology-enabled services are discussed.  相似文献   

14.
This paper addresses the impacts of different scheduling alternatives for a branching transit route. It examines different schedule alternatives that might be used to optimize the route performance in terms of the passenger traveling time distributed among branch passengers and trunk‐line passengers. The schedule alternatives considered include transit vehicle allocation to different branches, offset shifting across vehicles on different branches, and vehicle holding (slack time) in the transit vehicle schedule. With these variables, several vehicle schedules are devised and examined based on a wide variety of possible passenger boarding scenarios using deterministic service models. Test outcomes provide general conclusions about the performance of the strategies. Vehicle assignment leading to even headways among branches is generally preferred for the case of low passenger demand. However, when passenger demand is high, or the differences between the passenger demands on branches are significant, unequal vehicle assignment will be helpful to improve the overall route performance. Holding, as a proactive strategy in scheduling, has the potential to be embedded into the schedule as a type of slack time, but needs further evidence and study to determine the full set of conditions where it may be beneficial. Offset shifting does not show sufficient evidence to be an efficient strategy to improve route performance in the case of low or high passenger demand.  相似文献   

15.
The efforts of providing attractive transport service to residents in sparse communities have previously focused on operating flexible transit services. This paper identifies a new category of transit policies, called demi-flexible operating policies, to fill the gap between flexible transit services and conventional fixed-route systems. The passenger cost function is defined as the performance measure of transit systems and the analytic work is performed based on a real-world flag-stop transit service, in which we compare its system performance with another two comparable systems, the fixed-route and flex-route services, at expected and unexpected demand levels in order to be closer to reality. In addition, the dynamic-station policy is introduced to assist the flex-route service to better deal with unexpectedly high demand. Experiments demonstrate the unique advantages of demi-flexible operating policies in providing affordable, efficient, and reliable transport service in low-demand operating environments and this work is helpful to optimize the unifying framework for designing public transit in suburban and rural areas.  相似文献   

16.
This paper analyzes the influence of urban development density on transit network design with stochastic demand by considering two types of services, rapid transit services, such as rail, and flexible services, such as dial-a-ride shuttles. Rapid transit services operate on fixed routes and dedicated lanes, and with fixed schedules, whereas dial-a-ride services can make use of the existing road network, hence are much more economical to implement. It is obvious that the urban development densities to financially sustain these two service types are different. This study integrates these two service networks into one multi-modal network and then determines the optimal combination of these two service types under user equilibrium (UE) flows for a given urban density. Then we investigate the minimum or critical urban density required to financially sustain the rapid transit line(s). The approach of robust optimization is used to address the stochastic demands as captured in a polyhedral uncertainty set, which is then reformulated by its dual problem and incorporated accordingly. The UE principle is represented by a set of variational inequality (VI) constraints. Eventually, the whole problem is linearized and formulated as a mixed-integer linear program. A cutting constraint algorithm is adopted to address the computational difficulty arising from the VI constraints. The paper studies the implications of three different population distribution patterns, two CBD locations, and produces the resultant sequences of adding more rapid transit services as the population density increases.  相似文献   

17.
The operating cost of a demand responsive transit (DRT) system strictly depends on the quality of service that it offers to its users. An operating agency seeks to minimize operating costs while maintaining the quality of service while users experience costs associated with scheduling, waiting, and traveling within the system. In this paper, an analytical model is employed to approximate the agency's operating cost for running a DRT system with dynamic demand and the total generalized cost that users experience as a result of the operating decisions. The approach makes use of Vickrey's (1969) congestion theory to model the dynamics of the DRT system in the equilibrium condition and approximate the generalized cost for users when the operating capacity is inadequate to serve the time-dependent demand over the peak period without excess delay. The efficiency of the DRT system can be improved by optimizing one of three parameters that define the agency's operating decision: (1) the operating capacity of the system, (2) the number of passengers that have requested a pick-up and are awaiting service, and (3) the distribution of requested times for service from the DRT system. A schedule management strategy and dynamic pricing strategies are presented that can be implemented to manage demand and reduce the total cost of the DRT system by keeping the number of waiting requests optimized over the peak period. In the end, proposed optimization strategies are compared using a numerical example.  相似文献   

18.
In practice, travel time is assigned a cost and treated as a disutility to be minimized. There is a growing body of research supporting the hypothesis that travel time has some value of its own, and the proliferation of information and communication technology (ICT) may be contributing to that value. Travelers’ attitudes are confounded with their mode choice, and as telecommunications mediate travel behavior, analysts must recognize the interaction between time use and customer satisfaction for appropriate travel demand management. To that end, this paper presents results from jointly estimated models of travelers’ latent satisfaction and on-board activity engagement using Chicago transit rider data gathered in April 2010. The simple questionnaire and small sample corroborate the findings of past research indicating travel attitudes and activity engagement have potential to influence travelers’ value of time, and many transit riders consider transit a better use of time and/or money than driving. The findings affirm the need for a more holistic understanding of value of time for travel demand management and infrastructure valuation. As time use has an influence on users’ valuation of the transit mode, offering opportunities to conduct certain leisure activities could improve the perceived value of travel time.  相似文献   

19.
Fare and service frequency significantly affect transit users’ willingness to ride, as well as the supplier's revenue and operating costs. To stimulate demand and increase productivity, it is desirable to reduce the transfer time from one route to another via efficient service coordination, such as timed transfer. Since demand varies both temporally and spatially, it may not be cost-effective to synchronize vehicle arrivals on all connecting routes at a terminal. In this paper, we develop a schedule coordination model to optimize fare and headway considering demand elasticity. The headway of each route is treated as an integer-multiple of a base common headway. A discounted (reduced) fare is applied as an incentive to encourage ridership and, thus, stimulate public transit usage. The objective of the proposed coordination model is used to maximize the total profit subject to the service constraint. A numerical example is given to demonstrate the applicability of the proposed model. The results show that the optimized fare and headway may be carefully applied to yield the maximum profit. The relationship between the decision variables and model parameters is explored in the sensitivity analysis.  相似文献   

20.
Dong  Xiaoxia  DiScenna  Matthew  Guerra  Erick 《Transportation》2019,46(1):35-50

This paper reports the results of a stated preference survey of regular transit users’ willingness to ride and concerns about driverless buses in the Philadelphia region. As automated technologies advance, driverless buses may offer significant efficiency, safety, and operational improvements over traditional bus services. However, unfamiliarity with automated vehicle technology may challenge its acceptance among the general public and slow the adoption of new technologies. Using a mixed logit modeling framework, this research examines which types of transit users are most willing to ride in driverless buses and whether having a transit employee on board to monitor the vehicle operations and/or provide customer service matters. Of the 891 surveyed members of University of Pennsylvania’s transit pass benefit program, two-thirds express a willingness to ride in a driverless bus when a transit employee is on board to monitor vehicle operations and provide customer service. By contrast, only 13% would agree to ride a bus without an employee on board. Males and those in younger age groups (18–34) are more willing to ride in driverless buses than females and those in older age groups. Findings suggest that, so long as a transit employee is onboard, many transit passengers will willingly board early generation automated buses. An abrupt shift to buses without employees on board, by contrast, will likely alienate many transit users.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号