首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most deterministic day-to-day traffic evolution models, either in continuous-time or discrete-time space, have been formulated based on a fundamental assumption on driver route choice rationality where a driver seeks to maximize her/his marginal benefit defined as the difference between the perceived route costs. The notion of rationality entails the exploration of the marginal decision rule from economic theory, which states that a rational individual evaluates his/her marginal utility, defined as the difference between the marginal benefit and the marginal cost, of each incremental decision. Seeking to analyze the marginal decision rule in the modeling of deterministic day-to-day traffic evolution, this paper proposes a modeling framework which introduces a term to capture the marginal cost to the driver induced by route switching. The proposed framework enables to capture both benefit and cost associated with route changes. The marginal cost is then formulated upon the assumption that drivers are able to predict other drivers’ responses to the current traffic conditions, which is adopted based on the notion of strategic thinking of rational players developed in behavior game theory. The marginal cost based on 1-step strategic thinking also describes the “shadow price” of shifting routes, which helps to explain the behavioral tendency of the driver perceiving the cost-sensitivity to link/route flows. After developing a formulation of the marginal utility day-to-day model, its theoretical properties are analyzed, including the invariance property, asymptotic stability, and relationship with the rational behavioral adjustment process.  相似文献   

2.
3.
Real-time traffic information is increasingly available to support route choice decisions by reducing the travel time uncertainty. However it is likely that a traveler cannot assess all available information on all alternative routes due to time constraints and limited cognitive capacity. This paper presents a model that is consistent with a general network topology and can potentially be estimated based on revealed preference data. It explicitly takes into account the information acquisition and the subsequent path choice. The decision to acquire information is assumed to be based on the cognitive cost involved in the search and the expected benefit defined as the expected increase in utility after the search. A latent class model is proposed, where the decision to search or not to search and the depth of the search are latent and only the final path choices are observed. A synthetic data set is used for the purpose of validation and ease of illustration. The data are generated from the postulated cognitive-cost model, and estimation results show that the true values of the parameters can be recovered with enough variability in the data. Two other models with simplifying assumptions of no information and full information are also estimated with the same set of data with significantly biased path choice utility parameters. Prediction results show that a smaller cognitive cost encourages information search on risky and fast routes and thus higher shares on those routes. As a result, the expected average travel time decreases and the variability increases. The no-information and full-information models are extreme cases of the more general cognitive-cost model in some cases, but not generally so, and thus the increasing ease of information acquisition does not necessarily warrant a full-information model.  相似文献   

4.
Dynamic traffic assignment models have been attracting increasing attention with the progress of traffic management policies based on information technology. These dynamic estimation tools, however, just apply static route choice models either at only origin node or at every arrival node. This paper aims at providing some knowledge on drivers' dynamic route choice behavior using probe‐vehicle data. The results of analyses show that route choice behavior relates to the distance from driver's position to the destination and that dynamic route choice behavior is modeled better by considering decision process during the trip.  相似文献   

5.
The study of respondent heterogeneity is one of the main areas of research in the field of choice modelling. The general emphasis is on variations across respondents in relative taste parameters while maintaining the assumption of homogeneous utility maximising decision rules. While recent work has allowed for differences in the utility specification across respondents in the context of looking at heterogeneous information processing strategies, the underlying assumption that all respondents employ the same choice paradigm remains. This is despite evidence in the literature that different paradigms work differently well on given datasets. In this article, we argue that such differences may in fact extend to respondents within a single dataset. We accommodate these differences in a latent class model, where individual classes make use of different underlying paradigms. We present four applications using three different datasets, showing mixtures between “standard” random utility maximisation models and lexicography based models, models with multiple reference points, elimination by aspects models and random regret minimisation models. In each of the case studies, the behavioural mixing model obtains significant gains in fit over the base structure where all respondents are hypothesised to use the same rule. The findings offer important further insights into the behavioural patterns of respondents. There is also evidence that what is retrieved as taste heterogeneity in standard models may in fact be heterogeneity in decision rules.  相似文献   

6.
Sharma  Bibhuti  Hickman  Mark  Nassir  Neema 《Transportation》2019,46(1):217-232

This research aims to understand the park-and-ride (PNR) lot choice behaviour of users i.e., why PNR user choose one PNR lot versus another. Multinomial logit models are developed, the first based on the random utility maximization (RUM) concept where users are assumed to choose alternatives that have maximum utility, and the second based on the random regret minimization (RRM) concept where users are assumed to make decisions such that they minimize the regret in comparison to other foregone alternatives. A PNR trip is completed in two networks, the auto network and the transit network. The travel time of users for both the auto network and the transit network are used to create variables in the model. For the auto network, travel time is obtained using information from the strategic transport network using EMME/4 software, whereas travel time for the transit network is calculated using Google’s general transit feed specification data using a backward time-dependent shortest path algorithm. The involvement of two different networks in a PNR trip causes a trade-off relation within the PNR lot choice mechanism, and it is anticipated that an RRM model that captures this compromise effect may outperform typical RUM models. We use two forms of RRM models; the classical RRM and µRRM. Our results not only confirm a decade-old understanding that the RRM model may be an alternative concept to model transport choices, but also strengthen this understanding by exploring differences between two models in terms of model fit and out-of-sample predictive abilities. Further, our work is one of the few that estimates an RRM model on revealed preference data.

  相似文献   

7.
The goal of a network design problem (NDP) is to make optimal decisions to achieve a certain objective such as minimizing total travel time or maximizing tolls collected in the network. A critical component to NDP is how travelers make their route choices. Researchers in transportation have adopted human decision theories to describe more accurate route choice behaviors. In this paper, we review the NDP with various route choice models: the random utility model (RUM), random regret-minimization (RRM) model, bounded rationality (BR), cumulative prospect theory (CPT), the fuzzy logic model (FLM) and dynamic learning models. Moreover, we identify challenges in applying behavioral route choice models to NDP and opportunities for future research.  相似文献   

8.
This paper analyzes the observed decision-making behavior of a sample of individuals impacted by Hurricane Irma in 2017 (n = 645) by applying advanced methods based in discrete choice theory. Our first contribution is identifying population segments with distinct behavior by constructing a latent class choice model for the choice whether to evacuate or not. We find two latent segments distinguished by demographics and risk perception that tend to be either evacuation-keen or evacuation-reluctant and respond differently to mandatory evacuation orders.Evacuees subsequently face a multi-dimensional choice composed of concurrent decisions of their departure day, departure time of day, destination, shelter type, transportation mode, and route. While these concurrent decisions are often analyzed in isolation, our second contribution is the development of a portfolio choice model (PCM), which captures decision-dimensional dependency (if present) without requiring choices to be correlated or sequential. A PCM reframes the choice set as a bundle of concurrent decision dimensions, allowing for flexible and simple parameter estimation. Estimated models reveal subtle yet intuitive relations, creating new policy implications based on dimensional variables, secondary interactions, demographics, and risk-perception variables. For example, we find joint preferences for early-nighttime evacuations (i.e., evacuations more than three days before landfall and between 6:00 pm and 5:59 am) and early-highway evacuations (i.e., evacuations more than three days before landfall and on a route composed of at least 50% highways). These results indicate that transportation agencies should have the capabilities and resources to manage significant nighttime traffic along highways well before hurricane landfall.  相似文献   

9.
The multinomial probit model of travel demand is considerably more general but much less tractable than the better-known multinomial logit model. In an effort to determine the effects of using the relatively simple logit model in situations where the assumptions of probit modeling are satisfied but those of logit modeling are not, the accuracy of the multinomial logit model as an approximation to a variety of three-alternative probit models has been evaluated. Multinomial logit can give highly erroneous estimates of the choice probabilities of multinomial probit models. However, logit models appear to give asymptotically accurate estimates of the ratios of the coefficients of the systematic components of probit utility functions, even when the logit choice probabilities differ greatly from the probit ones. Large estimation data sets are not necessarily needed to enable likelihood ratio tests to distinguish three-alternative probit models from logit models that give seriously erroneous estimates of the probit choice probabilities. Inclusion of alternative-specific dummy variables in logit utility functions cannot be relied upon to reduce significantly the errors of logit approximations to the choice probabilities of probit models whose utility functions do not contain the dummies.  相似文献   

10.
Growing concerns regarding urban congestion, and the recent explosion of mobile devices able to provide real-time information to traffic users have motivated increasing reliance on real-time route guidance for the online management of traffic networks. However, while the theory of traffic equilibria is very well-known, fewer results exist on the stability of such equilibria, especially in the context of adaptive routing policy. In this work, we consider the problem of characterizing the stability properties of traffic equilibria in the context of online adaptive route choice induced by GPS-based decision making. We first extend the recent framework of “Markovian Traffic Equilibria” (MTE), in which users update their route choice at each intersection of the road network based on traffic conditions, to the case of non-equilibrium conditions, while preserving consistency with known existence and uniqueness results on MTE. We then exhibit sufficient conditions on the network topology and the latency functions for those MTEs to be stable in the sense of Lyapunov for a single destination problem. For various more restricted classes of network topologies motivated by the observed properties of travel patterns in the Singapore network, under certain assumptions we prove local exponential stability of the MTE, and derive analytical results on the sensitivity of the characteristic time of convergence to network and traffic parameters. The results proposed in this work are illustrated and validated on synthetic toy problems as well as on the Singapore road network with real demand and traffic data.  相似文献   

11.
The multinomial probit model of travel demand is considerably more general but much less tractable than the better-known multinomial logit model. In an effort to determine the effects of using the relatively simple logit model in situations where the assumptions of probit modeling are satisfied but those of logit modeling are not, the accuracy of the multinomial logit model as an approximation to a variety of three-alternative probit models has been evaluated. Multinomial logit can give highly erroneous estimates of the choice probabilities of multinomial probit models. However, logit models appear to give asymptotically accurate estimates of the ratios of the coefficients of the systematic components of probit utility functions, even when the logit choice probabilities differ greatly from the probit ones. Large estimation data sets are not necessarily needed to enable likelihood ratio tests to distinguish three-alternative probit models from logit models that give seriously erroneous estimates of the probit choice probabilities. Inclusion of alternative-specific dummy variables in logit utility functions cannot be relied upon to reduce significantly the errors of logit approximations to the choice probabilities of probit models whose utility functions do not contain the dummies.  相似文献   

12.
Models of individual choice behavior have been extensively developed and used in travel prediction during the last ten years. These models are generally formulated with utility functions that are linear in parameters. Theories of economics and psychology suggest that the true relationship between service variables and utility is non-linear. In this paper we demonstrate that non-linear transformations of time and cost variables produce statistically significant improvements in the model estimated, have a theoretically appealing interpretation, and lead to managerially important differences in policy evaluations. These results support the need to refine the specification of choice utility functions based on theoretical considerations and empirical research.  相似文献   

13.
Valuation of travel time savings is a critical measure in transport infrastructure appraisal, traffic modelling and network performance. It has been recognised for some time that the travel times associated with repeated trips are subject to variation, and hence there is risk embedded in the treatment of expected travel time. In the context of the expected utility framework, we use a nonlinear probability weighting function to accommodate choice made under risk. Although the empirical findings suggest small differences between the value of expected travel time savings (VETTS) in the presence and absence of risk, the mean estimate does make a noticeable difference to time benefits when applied to real projects. By incorporating nonlinear probability weighting, our model reveals that the probabilities associated with specific travel times that are shown to respondents in the choice experiment are transformed, resulting in overweighting of outcomes with low probabilities and underweighting of outcomes with high probabilities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
This paper examines network design where OD demand is not known a priori, but is the subject of responses in household or user itinerary choices to infrastructure improvements. Using simple examples, we show that falsely assuming that household itineraries are not elastic can result in a lack in understanding of certain phenomena; e.g., increasing traffic even without increasing economic activity due to relaxing of space–time prism constraints, or worsening of utility despite infrastructure investments in cases where household objectives may conflict. An activity-based network design problem is proposed using the location routing problem (LRP) as inspiration. The bilevel formulation includes an upper level network design and shortest path problem while the lower level includes a set of disaggregate household itinerary optimization problems, posed as household activity pattern problem (HAPP) (or in the case with location choice, as generalized HAPP) models. As a bilevel problem with an NP-hard lower level problem, there is no algorithm for solving the model exactly. Simple numerical examples show optimality gaps of as much as 5% for a decomposition heuristic algorithm derived from the LRP. A large numerical case study based on Southern California data and setting suggest that even if infrastructure investments do not result in major changes in link investment decisions compared to a conventional model, the results provide much higher resolution temporal OD information to a decision maker. Whereas a conventional model would output the best set of links to invest given an assumed OD matrix, the proposed model can output the same best set of links, the same daily OD matrix, and a detailed temporal distribution of activity participation and travel from which changes in peak period OD patterns can be observed.  相似文献   

15.
The modeling of travel decision making has been a popular topic in transportation planning. Previous studies focused on random-utility discrete choice models and machine learning methods. This paper proposes a new modeling approach that utilizes a mixed Bayesian network (BN) for travel decision inference. The authors use a predetermined BN structure and calculate priori and posterior probability distributions of the decision alternatives based on the observed explanatory variables. As a “utility-free” decision inference method, the BN model releases the linear structure in the utility function but assumes the traffic level of service variables follow multivariate Gaussian distribution conditional on the choice variable. A real-world case study is conducted by using the regional travel survey data for a two-dimensional decision modeling of both departure time choice and travel mode choice. The results indicate that a two-dimensional mixed BN provides better accuracy than decision tree models and nested logit models. In addition, one can derive continuous elasticity with respect to each continuous explanatory variable for sensitivity analysis. This new approach addresses a research gap in probabilistic travel decision making modeling as well as two-dimensional travel decision modeling.  相似文献   

16.
A class of random utility maximization (RUM) models is introduced. For these RUM models the utility errors are the sum of two independent random variables, where one of them follows a Gumbel distribution. For this class of RUM models an integral representation of the choice probability generating function has been derived which is substantially different from the usual integral representation arising from the RUM theory. Four types of models belonging to the class are presented. Thanks to the new integral representation, a closed-form expression for the choice probability generating function for these four models may be easily obtained. The resulting choice probabilities are fairly manageable and this fact makes the proposed models an interesting alternative to the logit model. The proposed models have been applied to two samples of interurban trips in Japan and some of them yield a better fit than the logit model. Finally, the concavity of the log-likelihood of the proposed models with respect to the utility coefficients is also analyzed.  相似文献   

17.
This paper proposes a unified approach to modeling heterogonous risk-taking behavior in route choice based on the theory of stochastic dominance (SD). Specifically, the first-, second-, and third-order stochastic dominance (FSD, SSD, TSD) are respectively linked to insatiability, risk-aversion and ruin-aversion within the framework of utility maximization. The paths that may be selected by travelers of different risk-taking preferences can be obtained from the corresponding SD-admissible paths, which can be generated using general dynamic programming. This paper also analyzes the relationship between the SD-based approach and other route choice models that consider risk-taking behavior. These route choice models employ a variety of reliability indexes, which often make the problem of finding optimal paths intractable. We show that the optimal paths with respect to these reliability indexes often belong to one of the three SD-admissible path sets. This finding offers not only an interpretation of risk-taking behavior consistent with the SD theory for these route choice models, but also a unified and computationally viable solution approach through SD-admissible path sets, which are usually small and can be generated without having to enumerate all paths. A generic label-correcting algorithm is proposed to generate FSD-, SSD-, and TSD-admissible paths, and numerical experiments are conducted to test the algorithm and to verify the analytical results.  相似文献   

18.
This paper presents an integrated simulator “CUIntegration” to evaluate routing strategies based on energy and/or traffic measures of effectiveness for any Alternative Fuel Vehicles (AFVs). The CUIntegration can integrate vehicle models of conventional vehicles as well as AFVs developed with MATLAB-Simulink, and a roadway network model developed with traffic microscopic simulation software VISSIM. The architecture of this simulator is discussed in this paper along with a case study in which the simulator was utilized for evaluating a routing strategy for Plug-in Hybrid Electric Vehicles (PHEVs) and Electric Vehicles (EVs). The authors developed a route optimization algorithm to guide an AFV based on that AFV driver’s choice, which included; finding a route with minimum (1) travel time, (2) energy consumption or (3) a combination of both. The Application Programming Interface (API) was developed using Visual Basic to simulate the vehicle models/algorithms developed in MATLAB and direct vehicles in a roadway network model developed in VISSIM accordingly. The case study included a section of Interstate 83 in Baltimore, Maryland, which was modeled, calibrated and validated. The authors considered a worst-case scenario with an incident on the main route blocking all lanes for 30 min. The PHEVs and EVs were represented by integrating the MATLAB-Simulink vehicle models with the traffic simulator. The CUIntegration successfully combined vehicle models with a roadway traffic network model to support a routing strategy for PHEVs and EVs. Simulation experiments with CUIntegration revealed that routing of PHEVs resulted in cost savings of about 29% when optimized for the energy consumption, and for the same optimization objective, routing of EVs resulted in about 64% savings.  相似文献   

19.
Static traffic assignment models are still widely applied for strategic transport planning purposes in spite of the fact that such models produce implausible traffic flows that exceed link capacities and predict incorrect congestion locations. There have been numerous attempts to constrain link flows to capacity. Capacity constrained models with residual queues are often referred to as quasi-dynamic traffic assignment models. After reviewing the literature, we come to the conclusion that an important piece of the puzzle has been missing so far, namely the inclusion of a first order node model. In this paper we propose a novel path-based static traffic assignment model for finding a stochastic user equilibrium in general transportation networks. This model includes a first order (steady-state) node model that yields more realistic turn capacities, which are then used to determine consistent capacity constrained traffic flows, residual point (vertical) queues (upstream bottleneck links), and path travel times consistent with queuing theory. The route choice part of the model is specified as a variational inequality problem, while the network loading part is formulated as a fixed point problem. Both problems are solved using existing techniques to find a solution. We illustrate the model using hypothetical examples, and also demonstrate feasibility on large-scale networks.  相似文献   

20.
Traffic evacuation is a critical task in disaster management. Planning its evacuation in advance requires taking many factors into consideration such as the destination shelter locations and numbers, the number of vehicles to clear, the traffic congestions as well as traffic road configurations. A traffic evacuation simulation tool can provide the emergency managers with the flexibility of exploring various scenarios for identifying more accurate model to plan their evacuation. This paper presents a traffic evacuation simulation system based on integrated multi-level driving-decision models which generate agents’ behavior in a unified framework. In this framework, each agent undergoes a Strategic, Cognitive, Tactical and Operational (SCTO) decision process, in order to make a driving decision. An agent’s actions are determined by a combination, on each process level, of various existing behavior models widely used in different driving simulation models. A wide spectrum of variability in each agent’s decision and driving behaviors, such as in pre-evacuation activities, in choice of route, and in the following or overtaking the car ahead, are represented in the SCTO decision process models to simulate various scenarios. We present the formal model for the agent and the multi-level decision models. A prototype simulation system that reflects the multi-level driving-decision process modeling is developed and implemented. Our SCTO framework is validated by comparing with MATSim tool, and the experimental results of evacuation simulation models are compared with the existing evacuation plan for densely populated Beijing, China in terms of various performance metrics. Our simulation system shows promising results to support emergency managers in designing and evaluating more realistic traffic evacuation plans with multi-level agent’s decision models that reflect different levels of individual variability of handling stress situations. The flexible combination of existing behavior and decision models can help generating the best evacuation plan to manage each crisis with unique characteristics, rather than resorting to a fixed evacuation plan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号