首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
质子交换膜燃料电池 (Proton Exchange Membrane Fuel Cell,PEMFC) 进行水管理的目的,是保证电池内部始终处于水平衡状态,实现长期稳定工作并且保持最高输出性能。精细的水管理策略依赖于电池内部的水含量状态准确量化的评估方法。总结归纳了目前国内外 PEMFC水含量的估计方法,概括为基于模型以及基于试验的两种方法;在对比分析现有估计方法优缺点的基础上,提出进一步研究的重点及方向。对车用 PEMFC水含量在线估计的研究具有重要的理论基础及工程应用价值。  相似文献   

2.
质子交换膜燃料电池(PEMFC)目前正处于实验室研究开发和逐渐走向实用化规模化的阶段。针对PEMFC长期工作稳定性差和难于控制的这一问题,在介绍PEMFC工作原理和技术发展的基础上,分析了温度分布参数对PEMFC电池性能的影响,从应用的角度出发,研究了PEMFC温度控制的特点,提出了PEMFC温度控制的新方法。  相似文献   

3.
使用寿命是限制质子交换膜燃料电池(PEMFC)商业化的主要问题。汽车复杂的工况条件加速了燃料电池的老化,因此,需要全面了解PEMFC各种工况下性能衰减机制,以促进其商业化发展。文章主要讨论了启停工况的相关研究背景和进展,分析了燃料电池在启停过程中的气体分布情况,并总结了导致燃料电池性能衰减的主要机理。最后,文章介绍了启停工况下的缓解策略,包括材料改进和系统控制,为解决PEMFC性能衰减问题和提高燃料电池寿命提供依据。  相似文献   

4.
朱仲文  汪鑫  江维海  李丞 《汽车工程》2023,(11):1991-2000
有效的热管理对于燃料电池汽车(fuel cell vehicles,FCV)的高效运行至关重要。燃料电池汽车热管理多采用各子系统独立管理方式,然而这种独立的方式并不能很好地利用自身余热从而提高热管理效率和续航里程。对此,本文开发了一种利用燃料电池余热的整车集成式热管理(vehicle integrated thermal management,VITM)系统,采用热交换器进行一体化的VITM,实现燃料电池的余热回收和各部件高效的热管理,通过六通阀的集成设计实现各回路解耦的灵活管理。并在AMESim仿真平台上开展热管理的仿真研究。结果表明:本文开发的VITM系统能保持燃料电池汽车各部件稳定维持在规定的工作温度范围内;在-10℃的环境温度下,利用燃料电池余热作为热源的热泵空调给动力电池加热,与直接加热模式相比,加热时间缩短55%;给乘员舱加热的时间缩短85%,且能耗比(coefficient of performance,COP)值为4,能耗降低75%。  相似文献   

5.
为提高锂离子动力电池的工作温度区间,保障电池的动力输出,需要在电池系统端进行有效的热管理设计。文章主要通过CFD热仿真技术分析了在不同实验工况下电池单体内部生成热、模组在加热及散热时的温度场分布,并通过对比分析不同散热结构的仿真结果,来优化电池内部散热结构的设计。整车的冷却实验验证结果也表明该设计可以有效地保障电池工作合理的温度范围内。  相似文献   

6.
<正>锂离子电池包热管理的要求是根据锂离子电池发热机理,合理设计电池包结构,选择合适的热管理方式,合理设计热管理策略,保证电池包内各个单体电池工作在合理温度范围内的同时尽量维持包内各个电池及电池模块间的温度均匀性。  相似文献   

7.
纯电动汽车动力电池在低温环境下会出现工作效率急剧下降的问题,文章针对该问题设计了相应的热管理方案。低温环境下,在电动汽车电机开始工作之前,采用带反馈调节功能的正温度系数(PTC)加热系统进行汽车动力电池预加热。通过四通阀将冷却液的电池与电机回路相通,构成了新的循环回路。电机开始运转之后,比较低温下PTC加热系统、电机余热分别对电池进行加热,与二者协同作用下电池温度的变化情况,发现PTC+驱动系统余热加热模式加热效率高,能量消耗少,因此,提出低温热管理方法,通过冷却液循环系统利用PTC加热系统与电机产生的热量对电池进行加热或保温。为弥补纯电动汽车单一能源的不足,以上热管理方法的能量来源于蓄电池-超级电容混合储能系统,保证电动汽车蓄电池的电量不会因热管理系统的消耗而大打折扣。  相似文献   

8.
介绍电动客车常见的电池热管理系统的结构及工作原理,为电动客车电池热管理的设计提供参考。  相似文献   

9.
通常纯电动汽车的动力电池是由若干单体电池组合而成,每一个单体电池荷电状态会存在一定程度的差异,而此差异会直接决定动力电池的使用性能,因此需要对动力电池进行均衡管理。其中锂离子动力电池的主要研究集中在电池单体技术、热管理技术以及能量管理技术等方面,因此BMS(电池管理系统)对动力电池均衡系统尤为重要。本文通过对电池均衡管理系统进行基本的介绍,并建立电池等效模型,为后续电池均衡模型的仿真提供理论参考,进而为电池均衡管理提供重要的研究价值。  相似文献   

10.
根据质子交换膜燃料电池(PEMFC)电堆起动和停机的控制策略,建造了PEMFC电堆低温起动平台。用20mm厚的软橡塑泡沫、聚苯乙烯和真空绝缘板将电堆密封,在-10℃环境舱内分别进行保温试验研究;当电堆中最冷的电池阴极催化层的温度达到触发温度(0℃)时,起动并加载PEMFC电堆至某一低温起动试验工况。试验结果揭示了PEMFC电堆低温起动的某些规律,为燃料电池汽车的商业化提供技术基础。  相似文献   

11.
豪彦 《汽车与配件》2001,(44):22-23
4.PEMFC燃料电池汽车商业化存在的问题 (1)价格问题 现在PEMFC燃料电池价格为1000~2000美元/kW。1997年加拿大巴拉德动力系统公司生产的PEMFC燃料电池车销售价格为每辆150万美元。如带燃料重整系统的PEMFC燃料电池车以年产50万件的PEMFC燃料电池系统生产成本为300美元/kW,是车用内燃机50美元/kW的6  相似文献   

12.
电池系统作为纯电动汽车惟一的动力来源,其热管理设计对电动汽车工作性能至关重要.采用隔热材料、空调压缩机散热、半导体制冷风扇散热3种方法进行电池组热管理设计,进行高温环境下的热性能测试,结果表明:隔热设计可有效减少高温热辐射进入电池箱内部,降低电池组温度受外部高温环境的影响;在电动汽车行驶过程中,隔热材料未明显增加电池组的温升;相对其他两种设计,隔热设计的热管理效果明显、结构简单、成本低、易于产业化.  相似文献   

13.
以商用圆柱形18650电池为研究对象,利用Bernardi简化生热模型,综合考虑了电池单体在不同温度、不同荷电状态(SOC)下的实际生热情况,通过混合脉冲功率性能放电测试(HPPC)和开路电压测试,拟合得到电池单体生热、直流内阻与SOC、温度的函数关系。结果表明,电池单体的生热与温度、SOC有很大关联,建立的单体生热模型可为动力电池包热管理的模拟和优化提供参考。  相似文献   

14.
为寻找合适的电池热管理系统对电池进行温度控制,降低车用锂离子电池热失控风险,基于文献挖掘,在明确了锂离子电池热管理研究出发点的基础上,对目前锂离子电池热管理技术进行综述。阐述了车用电池空冷、液冷、热管冷却、相变冷却和复合冷却方式研究现状和进展,总结了不同冷却方式的优缺点,进而提出动力锂离子电池热管理技术未来的发展方向。空气冷却和液体冷却技术虽使用较多,但控温效果较差;热管冷却和相变冷却技术虽控温效果较好,但结构复杂,成本较高。复合冷却技术将主动冷却与被动冷却结合,有效降低峰值温度的同时也提高了电池包温度的一致性,可满足不同工况的需求,应用前景较好。  相似文献   

15.
从电池热管理系统、热管理系统零部件类型、电池热管理系统设计流程、热管理系统的零部件选型以及热管理系统性能验证等几个方面全面介绍了动力电池热管理系统.对动力电池热管理系统的设计工作有一定的指导意义.  相似文献   

16.
为满足电动汽车电池系统轻量化设计要求,提高锂离子电池组能量密度,对电动汽车电池 组热管理系统进行了研究。通过有效散热和通风等方式,可提高电池组性能,延长电池组的使用寿命。分析了电动汽车锂离子电池组结构与电池单体热特性,通过调整电池组结构,评估电池组整体温 度场,以期为电动汽车电池组热管理研究提供参考。  相似文献   

17.
在车辆行驶过程中,质子交换膜燃料电池(PEMFC)堆性能受到发动机运行环境的影响。目前关于 PEMFC 堆环境适应性的研究,研究对象多为小功率的 PEMFC 堆。以大功率PEMFC堆为试验对象,采用控制变量法探究不同环境因素对PEMFC堆性能衰退的影响。结果表明:冷却液温度对PEMFC堆性能衰退 的影响较小;空气相对湿度和气体温度对PEMFC堆性能衰退的影响明显;氢气相对湿度对PEMFC堆性能衰退的影响不明,需要进一步探究。  相似文献   

18.
为了满足电动汽车电池包和电池热管理系统开发和试验需求,设计和搭建了基于CAN总线通讯交互的电池热管理系统试验台架。通过高温US06工况和低温NEDC工况电池热管理试验研究表明,该试验台架功能运行正常,电池包设计符合热管理要求。并初步验证了电池热管理基本控制策略的正确性,为后续整车级电池热管理标定试验和策略优化提供依据。  相似文献   

19.
根据某款三元动力电池的热特性,结合整车现有的空调和正温度系数加热元件(PTC)采暖系统,设计了针对该三元电池温度控制的液冷液热系统。在确保动力电池在高温条件下能正常工作的同时,解决了该三元电池在低温下无法充电或充电时间过长的问题。  相似文献   

20.
日本经济产业省于2004年启动了旨在加速质子交换膜(PEMFC)燃料电池实用化的氢能与燃料电池实证规划JHFC Project (Japan Hydrogen & Fuel Cell Demonslration Project),预计在4年中完成。其中以日本汽车研究所为主体实施“燃料电池汽车(FCV)实证研究”,以财团法人工程振兴协会(ENAA)为主体实施“燃料电池车用氢能供应设备实证研究”。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号