首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
东苕溪大桥的主塔为双向倾斜混合拱形塔柱,上部钢结构与下部混凝土结构间通过结合部实现刚度过渡和内力的传递,构造及受力复杂。选取包括承台在内的半个主塔结构,建立考虑钢与混凝土之间相对滑移和接触的精细化实体-板壳有限元计算模型,分析塔柱线形和连接件布置等调整时对结合部受力性能的影响。通过合理化设计,结合部混凝土应力分布均匀,刚度过渡平稳,塔柱受力性能得到改善。  相似文献   

2.
林俊  黄志刚 《公路与汽运》2022,(6):95-98+103
受地形影响,山区高速公路桥梁常设计为大纵坡,在温度、自重、汽车等多种荷载作用下,大纵坡桥梁底与支座接触易发生滑移破坏,桥梁安全性和适应性受到影响。为研究多种荷载组合作用下考虑支座接触滑移的大纵坡高速公路桥梁的受力性能,文中运用ANSYS有限元软件建立精细化多片简支T梁模型,采用非线性弹簧单元模拟滑移支座,通过建立水平滑移模型,对不同摩擦系数下大纵坡桥梁在多荷载组合作用下的受力性能进行对比分析。结果表明,增大支座摩擦系数,可减小大纵坡高速公路桥梁的跨中挠度,但会使主梁纵向应力与应变增大。  相似文献   

3.
某槽形梁斜拉桥塔梁固结区采用预应力混凝土结构,槽形主梁在两侧与塔柱固结、主梁下设横梁与桥塔形成横向框架体系.为研究该槽形梁斜拉桥塔梁固结区的受力特性并验证结构安全性,采用有限元软件ANSYS建立塔梁固结区空间模型,验证模型正确性后分析固结区结构的应力分布情况,并探讨了槽形梁底板上缘与塔柱交接角、槽形梁过人洞与塔柱人洞交接角以及塔柱过人洞折角等构造细节对固结区应力的影响.结果表明:塔梁固结区整体应力满足使用要求,但存在局部应力集中现象.最大主压应力、最大主拉应力分别出现在槽形梁底板上缘与塔柱交接角处及槽形梁过人洞与下塔柱人洞交接角处.构造细节改进后,塔梁固结区应力集中程度明显降低.  相似文献   

4.
赤石大桥主桥为(165+3×380+165)m四塔双索面斜拉桥,桥塔采用空间双曲线塔墩+A形塔柱的超高墩桥塔,塔底至桥面高度达182.2m。为确定该桥合理的结构体系和桥塔参数并验证超高墩桥塔结构的适用性,采用MIDAS Civil软件建立全桥有限元模型,分析不同结构体系和不同塔柱分肢宽度、塔墩分肢高度下的结构响应,并制作1∶20塔墩节段模型进行静载试验,研究桥塔的受力性能。结果表明:赤石大桥主桥采用中塔处塔梁墩固结、边塔处塔墩固结并在墩顶设置支座的结构体系,塔墩分肢高度取60m,塔柱分肢宽度取16m时,受力状态最优;塔墩竖向应力沿高度方向呈"中间大、两端小"分布;塔墩开裂荷载为1.41倍设计荷载,结构满足承载能力要求;桥面附近B横梁处首先出现裂缝,建议增加预应力改善其受力状态。  相似文献   

5.
为了探讨地震作用下斜拉桥支座脱空现象及其对结构地震响应的影响,分析支座脱空的影响因素。根据一座独塔斜拉桥建立考虑支座脱空的全桥三维非线性有限元模型,以7条实际地震动作为地震输入,采用非线性时程方法研究地震作用下斜拉桥支座脱空现象及其效应,探讨塔梁间纵向设置黏滞阻尼器和墩梁间竖向设置抗拉装置这2种方式对支座脱空的控制效果。结果表明:在纵向地震作用下,支座脱空后梁端产生了较大的竖向位移,当梁体与支座再次接触时会产生较大碰撞力;支座脱空对结构整体地震响应的影响不大,如墩底弯矩、塔柱弯矩、梁端纵向位移等受支座脱空的影响较小;竖向地震动对支座脱空影响明显,考虑竖向地震动后,在输入地震波地面加速度峰值PGA较小时可能产生支座脱空现象;对于背景工程,仅在塔梁纵向设置黏滞阻尼器不能达到支座脱空的控制目标;在墩梁竖向设置抗拉装置能满足要求,但抗拉装置的弹性刚度和拉力均较大;黏滞阻尼器和抗拉装置联合使用可以优化抗拉装置参数,满足支座脱空控制目标时对应的抗拉装置弹性刚度和拉力均大幅度减小。  相似文献   

6.
斜拉桥拱形主塔由于良好的受力性能和美学效果得到了广泛应用,其施工过程的安全性和施工工序的优化值得关注。该文以韶关曲江大道江湾大桥主桥拱形主塔为工程背景,采用Ansys和Midas两种软件建立拱形主塔施工全过程的有限元模型,并研究下横梁预应力钢筋张拉顺序对主塔根部拉应力的影响规律。主塔施工全过程的应力分析结果显示:下塔柱在某些工况的拉应力偏大,全过程压应力均在安全范围之内。同时,对下横梁预应力张拉工序进行优化之后,主塔根部区域的拉应力得到改善。  相似文献   

7.
马鞍山长江公路大桥塔梁固结处模型试验研究   总被引:2,自引:0,他引:2  
为研究马鞍山长江公路大桥塔梁固结处的受力性能,对实桥相应部位进行缩尺模型试验,并结合有限元计算对模型进行受力分析。选取半幅实桥中相应部位的塔柱和含塔梁固结处的下横梁及加劲梁制作成1∶4缩尺模型,进行塔梁固结处控制工况加载,并采用ANSYS建立相应空间三维实体模型进行理论计算。试验结果与有限元计算结果表明:塔梁固结处各部位的应力均满足规范要求,结构具有足够的安全度。  相似文献   

8.
为研究大跨度叠合梁斜拉桥施工阶段极限状态下的受力性能和破坏机理,以西固黄河大桥主桥为背景,采用ANSYS软件建立全桥有限元模型,计算该桥在最大双悬臂、最大单悬臂和二期恒载等典型施工阶段的非线性稳定安全系数,分析结构在各施工阶段的斜拉索应力、塔梁连接处Mises应力和塔顶、主梁跨中的荷载~位移曲线。结果表明:该桥各典型施工阶段的非线性稳定安全系数均满足不小于2的设计要求;当主桥达到极限承载力时,部分斜拉索先破断,破坏过程合理;最大双悬臂施工阶段桥塔整体未达到屈服状态,最大单悬臂施工阶段和二期恒载施工阶段塔梁连接处出现塑性区;塔顶和主梁跨中的荷载~位移曲线具有显著的非线性效应。  相似文献   

9.
以在建某斜拉桥为工程背景,采用大型有限元计算软件ANSYS建立主塔节段三维有限元实体模型,对主塔下塔柱预应力布置及其对应的应力分布等关键因素进行了计算分析研究,分析总结了宝石形主塔下塔柱受力情况,研究结果对类似结构形式的主塔结构设计提供参考。  相似文献   

10.
大榭第二大桥为单索面斜拉桥,为了验证其钢—混组合索塔在施工过程中的抗风安全性,采用有限元数值分析方法,对索塔在下横梁浇筑前、上横梁浇筑前、裸塔阶段等3种施工控制状态,在20年一遇台风作用下的静阵风荷载响应进行了分析,并进一步分析了裸塔状态下施加临时风缆后对抗风性能的改善情况.研究结果表明:索塔施工过程中风荷载作用下产生的最大拉应力出现在裸塔阶段,位于横桥向迎风侧中塔柱根部,与恒载效应组合后,最大拉应力值为5.04 MPa,;最大拉应力产生的裂缝宽度为0.067 mm,小于规范规定的限值(0.15 mm);裸塔状态下施加临时风缆可以显著减小混凝土塔柱的最大拉应力.  相似文献   

11.
斜拉桥异形截面索塔锚固区足尺模型试验与应力分析   总被引:1,自引:0,他引:1  
斜拉桥索塔锚固区是桥梁结构的关键受力部位,特别是对于异形截面形式的桥塔来说,单纯的力学分析很难反映结构的实际工作状态与应力分布状况。为此,针对马岭河特大桥非对称六边形索塔锚固区进行足尺节段模型试验,对试验过程中节段模型裂缝的产生、发展及应力等进行观测和分析,并对索塔锚固区节段进行空间有限元分析。结果表明,试验和理论分析结果符合程度较好,索塔锚固区连接部位外侧以及折线形长边内侧转角2个区域是开裂敏感区,其抗裂安全系数为1.3,破坏安全系数为1.6。  相似文献   

12.
常光照 《桥梁建设》2012,42(3):80-85
通州世纪大桥为倾斜拱形独塔斜拉桥,跨径组合为110m(主跨)+80 m(锚跨),主梁采用π形肋板式断面结构,桥塔为拱形钢结构,塔高63.6 m,塔身向锚跨倾斜15°,斜拉索采用φ7高强度平行钢丝,为扇形空间索面布置,主墩承台为哑铃形布置,采用钻孔灌注桩基础.采用MIDAS Civil 2010程序建立全桥有限元模型进行主桥总体结构计算分析,采用ANSYS程序建模进行斜拉索塔上锚固局部应力、钢塔与混凝土塔座结合处及塔梁相接处中横梁受力分析,分析验证该桥各项指标均能满足规范要求,且有一定的安全储备.  相似文献   

13.
为了解斜拉-悬索协作体系桥梁塔-基钢混结合段受力情况,根据某实际工程,利用ANSYS软件建立塔-基钢混结合段的三维实体有限元模型,分析计算其在最不利荷载工况下的力学特性。结果表明:运营阶段的作用效应组合工况为塔-基钢混结合段受力最不利荷载工况;塔-基钢混结合段的钢箱部分受力呈近承台面应力水平低、近结合段上分界面应力水平高的分布规律,钢箱部分最大Mises应力小于材料屈服强度;主桥塔钢箱内填混凝土在钢混结合段上分界面处及与承台顶面交界面因尺寸突变均出现小范围点状拉应力集中,峰值达8.5 MPa;最大主压应力为16.8 MPa,均小于规范限值。在不考虑极少位置应力集中开裂的情况下,塔-基钢混结合段受力安全。  相似文献   

14.
椒江特大桥主桥为主跨480m的四线铁路连续钢桁梁斜拉桥,采用H形混凝土塔,索塔锚固采用环向预应力锚固。为确定索塔锚固区环向预应力的合理布置方式,采用MIDAS FEA建立桥塔实体模型,对U形束、井字形直束2种布束方式进行比选,在此基础上,分析施工、运营及断索工况下锚固区的受力性能,并进行预应力合理张拉顺序研究。结果表明:环向预应力采用U形束布置是经济、合理的;锚固区混凝土在预应力切向基本处于受压状态,在预应力法线方向出现1 MPa以内的拉应力,斜拉索张拉会增加侧壁内侧、外索孔处水平拉应力,运营期寒潮效应使塔壁外侧产生较大拉应力,断索时前、后壁齿块横桥向拉应力增加;上塔柱应设置外表面钢筋网片并加强竖向、环向配筋;环向预应力施工时,宜同时张拉内、外侧预应力。  相似文献   

15.
索塔是缆索承重桥梁中的一重要受力构件,型式多样、荷载条件复杂,其最终的应力状态同桥梁施工过程密切相关,且空间受力特性明显。以一实际斜拉桥索塔为背景,采用实体退化系列单元模拟了整个施工过程,对索塔结构的空间应力状态进行了分析,探讨了索塔根部截面竖向正应力随施工过程的变化情况。分析结果表明索塔结构的竖向应力空间特性明显,施工过程中应力变化复杂。空间分析弥补了平面分析的不足,其结果对保证索塔安全、完善索塔设计具有实际意义,所采用的分析方法值得推广应用。  相似文献   

16.
装配式空心板桥梁应用广泛,铰缝的损坏是装配式空心板桥梁的一个常见病害,且对于铰缝失效机理存在争议,多数学者认为铰缝设计存在缺陷,铰缝的损伤是被横向拉应力“拉坏”的。对于老桥的调研,发现铰缝病害出现的比例很高,而对新桥的调研发现均未出现铰缝问题,若铰缝是“被拉坏的”,那么铰缝问题不能仅存在于老桥中,所以铰缝失效机理还有其他重要原因。利用ABAQUS建立详细的有限元模型,充分考虑了铰缝与空心板之间的接触、铰缝与空心板的连接钢筋,得出铰缝结构受力合理,其中连接钢筋的地位非常重要,若连接钢筋发生锈蚀,铰缝的受力便出现缺陷,所以得出结论:铰缝病害是连接钢筋的锈蚀而引起的。  相似文献   

17.
现行规范中针对常规索塔制定的误差标准对于超高索塔可能不再适用.以苏通大桥为工程背景,采用有限元软件MIDAS建立该桥的空间有限元模型,对该桥在一系列的索塔纵向偏位以及高程误差的工况下进行了分析,对在这些工况下全桥的几何形态和结构受力的敏感性进行了研究,考察的内容包括索塔偏位和应力、主梁线形和应力以及斜拉索索力.得到了不同的误差组合对索塔结构位移及内力的影响规律,对确定超大跨斜拉桥索塔施工误差标准提出了建议.  相似文献   

18.
公铁两用彩针型桥塔斜拉桥的桥塔钢管节点受力复杂,该文通过对团泊钢塔的钢管结构进行有限元分析,充分了解钢塔节点的应力分布状况和构造细节处的应力集中程度,在此基础上进一步考虑疲劳设计方法,在设计上采取措施,提高结构的抗疲劳性能,为今后同类结构提供参考。  相似文献   

19.
为研究钢管混凝土系杆拱桥关键节点的受力行为,以某钢管混凝土系杆拱桥为工程背景,采用有限元方法对其全过程非线性受力行为进行深入分析。首先,建立钢管混凝土拱桥整体模型,对其整体受力行为进行分析,提取系杆拱桥关键节点在设计荷载工况下的最不利内力情况;然后以力边界条件形式施加给节点三维精细有限元模型,对拱脚节点和拱肋吊装节点在设计荷载工况下进行应力分析,探讨2种节点在设计荷载工况下的受力行为;最后,考虑材料非线性行为,采用弧长法对2类节点极限承载力进行分析,探讨其承载非线性行为及安全储备。研究结果表明:这2种节点构造形式在设计荷载工况下均安全可靠,且具有较大的安全储备;拱脚节点区拱肋钢管与系梁上翼缘板相交处存在明显的应力集中现象,该处构造复杂,焊缝多,设计时应重点关注;吊装节点区下弦钢管径向刚度小,采用环向加劲肋加强后,对钢管刚度及承载力均有显著改善。  相似文献   

20.
为研究大跨度斜拉桥双向曲面混合桥塔钢-混结合段的力学行为与传力机理,设计相似比为1:4的全截面静载试验模型,测试最不利及超载工况下结构的应力、变形、开裂等;结合有限元仿真分析,研究桥塔钢-混结合段的传力机理,并进一步探讨结构构造参数对其影响规律。结果表明:最不利荷载工况下,钢结构最不利压应力为-165.44 MPa,位于钢过渡段主跨受压侧壁板;混凝土最不利拉应力为8.65 MPa,叠加预应力效应后约为1.73 MPa,位于混凝土段边跨受拉侧;沿塔轴向,钢结构应力平缓降低并在承压板附近存在突变,混凝土应力较为平稳;剪力钉及PBL剪力键弯曲应力均呈"两头大、中间小"的马鞍形分布。模型各构件实测应力随荷载增加呈线性增长,模型整体处于弹性受力状态;结合段钢-混最大滑移值仅65 μm,钢-混之间协同受力良好;模型上下缘实测应力差异约为10%,表明双向曲面构造引起一定的空间受力特性,但挠度量值差异小。超载工况下,1.4倍加载时混凝土段边跨受拉侧出现裂纹;1.7倍加载时钢过渡段主跨受压侧局部应力屈服,模型受力整体表现为以钢过渡段受压侧及混凝土段受拉侧最为不利。2.0倍加载下,模型水平挠度随荷载变化均近似线性增加,转角近似满足线性变化,受混凝土开裂影响较小;最大水平挠度仅1.43 mm,挠跨比约为1/3 000,结构具有良好的刚度性能;结合段内混凝土局部开裂对受拉区的钢-混相对滑移影响较为显著。通过承压板、钢壁板及PBL板分别传递荷载66.3%、15.2%及18.5%,承压板为主要传力构件。参数讨论表明,原桥合理承压板、钢壁板厚度分别介于40~80、24~40 mm之间,剪力连接件刚度对结构传力影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号