首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Power loss optimization aiming at the high-efficiency drive of front-and-rear-induction-motor-drive electric vehicle (FRIMDEV) as an effective way to improve energy efficiency and extend driving range is of high importance. Different from the traditional look-up table method of motor efficiency, power loss optimization of the dual- motor system based on the loss mechanism of induction motor (IM) is proposed. First of all, based on the power loss characteristic of FRIMDEV from battery to wheels, the torque distribution optimization model aiming at the minimum system power loss is put forward. Secondly, referring to d-q axis equivalent model of IM, the power loss functions of the dual-IM system are modeled. Then, the optimal torque distribution coefficient (β o) between the two IMs is derived, and the theoretical switching condition (T sw) between the single- and dual-motor-drive mode (SMDM and DMDM) is confirmed. Finally, a dual-motor test platform is developed. The derived torque distribution strategy is verified. The influence of motor temperature on β o and T sw are tested, and the correction models based on temperature difference are proposed. Based on the system power loss analysis, it can be confirmed that, under low load conditions, the SMDM takes priority over the DMDM, and the controller of the idling motor should be shut down to avoid the additional excitation loss. While under middle to high load conditions, even torque distribution (β o = 0.5) is preferred if the temperature difference between the two IMs is small; otherwise, β o should be corrected based on dual-motor temperatures. The theoretical T sw derived without dealing with temperature difference is a function only of motor speed, while temperature difference correction of it should be conducted in actual operations based on motor resistance changing with temperature.  相似文献   

2.
This paper presents a new active steering control system based on driving phase diagram (β fr ?δ f diagram). In order to make state variables to follow those of nominal vehicle model that was developed under no consideration of disturbance, Quadratic Programming Problem (QPP) is formulated, where time varying objective function minimizes the differences between nominal and actual parameters. The steering characteristic in active steering control system changes when the vehicle faces disturbance such as crosswind and flat tire, and driver tries to counteract it after recognizing the change. The proposed method defines a stability region on β fr ?δ f diagram. In order to make β fr and δ f remain in the stability region, a new model predictive controller is proposed. While conventional controllers are restrictive to satisfy the β fr ?δ f diagram based stability condition, the proposed controller ensures solution space and also plays a direct role to minimize the evaluation function in the constrained optimal control problem.  相似文献   

3.
In this paper, a gain scheduled linear quadratic tracking system (LQTS) tuned optimally by an evolutionary strategy (ES) is devised to reduce the total tailpipe hydrocarbon (HC) emissions of an automotive engine over the coldstart period. As the engine’s behavior during coldstart operations is nonlinear, the system dynamics is clearly analyzed and represented by a number of separate linear models generated based on a coldstart model verified by experimental data. An independent LQTS is then implemented for each of these linear models. In this way, several control laws are created, and the corresponding gains are calculated for each of the independent control laws. ES is then used to tune the adjustable parameters of LQTSs to calculate the control inputs, namely air/fuel ratio (AFR) and spark timing (Δ), such that the resulting exhaust gas temperature (T exh) and engine-out HC emissions (HC raw) be close to a set of optimum profiles. This enables the controller reduce the cumulative tailpipe hydrocarbon emissions (HC cum) to the highest possible extent. To demonstrate the acceptable performance of the proposed controller, an optimal controller derived from the Pontryagin’s minimum principle (PMP) is also taken into account. Based on the results of the conducted comparative study, it is shown that the proposed control technique has a very good performance, and also, can be easily used for real-time applications, as it consumes a remarkably trivial computational time for calculating the controlling commands.  相似文献   

4.
以某全承载大客车作为研究对象,应用有限元分析理论,建构了客车有限元模型和客车上部结构强度的数值模拟研究环境.根据ECE R66的等效认证方法,进行了整车质心位置计算以及车体截段实车侧翻试验,评价了其上部结构的变形及其侵入乘员生存空间的状况.将车体截段试验结果与数值仿真结果对比,研究发现两者具有较好一致性.在此基础上,研...  相似文献   

5.
In-cylinder charge density at top dead center is an important parameter of diesel engines and is influenced by intake pressure, intake temperature, and compression ratio. The effects of charge density on fuel spray, combustion process, and emissions were investigated by using a constant volume bomb and a heavy-duty diesel engine. Spray development resistance increased with the increase of the charge density in the constant volume bomb. It was found that short spray penetration was accompanied by a large spray cone angle in the former stage with high charge density. However, the equivalence ratio was lowered and the degree of homogeneity of the mixture was increased in the later stage owing to the rapid interaction of fuel and gas at a high mixing rate. Combining the first law of thermodynamics and the second law of thermodynamics for analysis, as the charge density increased, the gross indicated thermal efficiency (ITEg) was improved. However, pumping loss had to be considered with higher charge density. Under this condition, the brake thermal efficiency (BTE) trend was increased initially and decreased subsequently. Under high-load operation (1200 r/min BMEP, 2.0 MPa), the minimum charge density value of 44.8 kg/m3 was found to be reasonable. This charge density was suitable for combustion and brought about minimum exhaust energy and trade-off emissions. Moreover, by analyzing two operation conditions in terms of the maximum BTE with the Miller and the conventional cycles, compression temperature and combustion temperature were reduced in the Miller cycle with the charge density 44.8 kg/m3. A high Cp/Cv could improve the cylinder exergy/power conversion process by its positive effect of increasing the specific heat ratio. Owing to the interaction between a high Cp/Cv and exergy loss to heat transfer, the condition with the minimal charge density could produce more piston work.  相似文献   

6.
Installed between metallic DIW (Door in White) panel and nonmetallic door glass, automotive window seals has great influence on customers’ perception of NVH (Noise-Vibration-Harshness) performance. Recently, aerodynamic effect on ride comfort attracts increasing research interest. The external load causes unsteady pressure on glass, which is finally transferred to window seals and leads to complicated vibration and increases interior noise level. However, non-linearities of hyper-elastic material, rubber-glass contact and large deformation behavior make the construction of window seals constraint model much more difficult, thus impeding further analysis and optimization. A new window seal design method is proposed featuring in considering aerodynamics-induced load and nonlinear constraint. Firstly, by SST ? k ? ε (Shear Stress Transport) turbulence model, external flow field of full-scale automotive is established by solving three-dimensional, steady and uncompressible Navier-Stokes equation. With re-exploited mapping algorithm, the overall aerodynamic pressure is extracted and matched to local window as external loads for seals, thus taking into account high speed fluid-structure interaction. Secondly, based on functional equivalence and mathematical fitting, new surrogate constraint model is presented. The unitedseal CLD (Compression Load Deflection) curve is synthesized after translations and transformations from two semi-seal CLD experimental measurements of inner and outer lips. It is then fit to complex exponential function, making seal constraint equivalent to a surrogate elastic constraint with variable stiffness. Experiment is performed to verify the constraint surrogation effectiveness. Finally, case study of window seal design under high speed is investigated. After seal optimization based on the new method, windows seals’ maximal displacements have decreased. The improved seal-glass fitting status shows better NVH quality of window seal in high-speed condition.  相似文献   

7.
In lean-DeNOX catalysis reactions, hydrogen is a good reducing agent in PGM catalysts as well as an effective promoter in selective catalytic reduction reactions over base metal oxide catalysts. However, such a lean-DeNOX system, which uses hydrogen, requires an on-board fuel reforming system applicable to internal combustion engines. In this study, catalytic partial oxidation (CPOx) performance was tested in a laboratory for various reactants and hydrocarbon conditions. Volume concentrations of 5–10% oxygen and 0-5% water vapor were used to simulate diesel exhaust, and n-C12H26 was used as the feedstock for the reforming reaction. In the CPOx of n-C12H26, the highest hydrogen selectivity was 64% and was achieved at 100,000 h-1 GHSV. Additionally, the C/O ratio was less than unity in the absence of water vapor. However, as the water concentration was increased to 2.5 and 5.0 vol. % in the n-C12H26 CPOx reactions, the maximum hydrogen selectivity was increased from 64% in the absence of water to 70% and 75%, respectively. This effect is a consequence of the water-gas shift reaction over the catalyst bed. Regarding oxygen concentration effects, hydrogen selectivity slightly increased with increasing oxygen concentration from 10% to 15%. It was also found that the CPOx reaction of n-C12H26 can be ignited at temperatures below 300 C. Accordingly, it can be concluded that CPOx is a useful and feasible device for promoting diesel DeNOx catalysis in terms of hydrogen productivity and reaction initiation.  相似文献   

8.
The use of automotive LPG characteristics which are easy to evaporate vaporization and carry. The paper presents a design of extended-range electric vehicle for wall-guided two stroke LPG engine with direct injection combustion system. Based on the modified vehicle LPG spray model, a database describing the characteristics of vehicle LPG fuel was built and imported into the CFD software. And the accuracy of the model is verified by the Schlieren experimental results. The concentration and velocity field of the mixture in the cylinder under different load conditions are numerically analyzed. The analyzed result indicated that the start injection time θ = 60°–70°CA BTDC under part load condition, the plug electrode near the gathering of a richer mixture is easy to be fired at spark ignition time, the obvious formation of mixture in cylinder is formed and the overall air-fuel ratio is above 40: 1. The start-transition working condition and large load conditions in the piston moves upward before closing the exhaust port to start injection LPG. The optimized LPG injection start time θ ensures that the fresh gas is locked in the cylinder when the exhaust port is closed (63°CA ABDC). In the ignition time of the spark plug, an ideal homogeneous mixture in the cylinder is realized.  相似文献   

9.
Understanding the mechanism of carbon oxidation is important for the successful modeling of diesel particulate filter regeneration. Characteristics of soot oxidation were investigated with carbon black (Printex-U). A flow reactor system that could simulate the condition of a diesel particulate filter and diesel exhaust gas was designed. Kinetic constants were derived and the reaction mechanisms were proposed using the experimental results and a simple reaction scheme, which approximated the overall oxidation process in TPO as well as CTO. From the experiments, the apparent activation energy for carbon oxidation with NO2-O2-H2O was determined to be 40±2 kJ/mol, with the first order of carbon in the range of 10∼90% oxidation and a temperature range of 250∼500°C. This value was exceedingly lower than the activation energy of NO2-O2 oxidation, which was 60±3 kJ/mol. When NO2 exists with O2 and H2O, the reaction rate increases in proportion to NO2. It increases nonlinearly with O2 or H2O concentration when the other two oxidants are fixed.  相似文献   

10.
This paper presents a new control scheme for lateral collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of lateral CA systems. The first contribution is a new lane-changing model based on vehicle edge turning trajectory (VETT) to make vehicle adapt to different driving roads and conform to drivers’ characteristic, in addition to ensure vehicle steering safety. The second contribution is vehicle semi-uncertainty dynamic model (SUDM), which is SISO model. The problem of stability performance without the information on sideslip angle is solved by the proposed SUDM. Based on the proposed VETT and SUDM, the lateral CA system can be designed with H robust controller to restrain the effect of uncertainties resulting from parameter perturbation and lateral wind disturbance. Single and mixed driving cycles simulation experiments are carried out with CarSim to demonstrate the effectiveness in control scheme, simplicity in structure for lateral CA system based on the proposed VETT and SUDM.  相似文献   

11.
Recent developments in the aerospace and automotive industries have significantly affected the progress of modern manufacturing technologies, including the heat treatment of gear wheels. This view has been expressed in the works of Gräfen and Edenhofer (1999), Herring and Houghton (1995), Preisser et al. (1998) and Sugiyama et al. (1999). For ecological and economic reasons, however, traditional treatments are still in use. Additionally, the implementation of a new process in the aerospace industry is very difficult due to the safety precautions that are involved in this kind of production. In order to protect the surfaces of components from disadvantageous structural changes related to the hardening process (oxidation, decarburization and carburizing) galvanic copper plating is widely used even though the process is known to be harmful to the environment. On the other hand, as pointed out by Dawes and Cooksey (1965), it is commonly known that the most effective protection of a batch against these undesirable effects is a protective atmosphere applied during the heating. Therefore, the development of a fully controlled and repeatable process of gear wheel heat treatment under a protective atmosphere will reduce the global emission of toxic substances originating from galvanic copper plating and cooper stripping processes, while at the same time providing more effective protection of the parts.  相似文献   

12.
A four-wheel-independent-steering (4WIS) electric vehicle (EV) with steer-by-wire (SBW) system is proposed in this paper. The fast terminal sliding mode controller (FTSMC) is designed for the SBW system to suppress external disturbances. Taking unstructured and structured uncertainties into consideration, a robust controller is designed for the 4WIS EV utilizing μ synthesis approach and the controller order reduction is implemented based on Hankel-Norm approximation. Since sideslip angle is the feedback signal of robust controller and it is hard to measure, the extended Kalman filter (EKF) is employed to estimate sideslip angle. To evaluate the vehicle performance with the designed control system, step and sinusoidal steering maneuvers are simulated and analyzed. Simulation results show that the designed control system have good tracking ability, strong robust stability and good robust performance to improve vehicle stability and handing performance.  相似文献   

13.
The article concerns the dynamics of a four-axle 20 ton special purpose vehicle in the driver’s panicky defensive manoeuvre resulting from edge drop-off of wheels onto a soft shoulder. A calculation model in the PC-Crash software environment has been developed to include the complex mechanism of the soft soil response to the wheel movement. The analysis of the results indicates the danger manifested by strong wheels vibrations, instantaneous change of vehicle steerability characteristics and a high rate of increase of the yaw angle and vehicle pitch during braking with steered wheels turned. The calculations indicate an extremely adverse effect of the phase of vehicle oversteer which in the analysed motion of the vehicle lasts over 1.5 s. The calculations prove that in such a short time the driver has very little chance of any practical response to the non-typical behaviour of the vehicle which otherwise is, in general, understeered.  相似文献   

14.
In this study, the effect of hydrothermal aging over a commercial diesel oxidation catalyst (DOC) on deterioration in nitrogen dioxide (NO2) production activity has been experimentally investigated based on a micro-reactor DOC experiment. Through this experimental result, the NO2 to nitrogen oxides (NOx) ratio at DOC outlet has been mathematically expressed as a function of DOC temperature according to various aging conditions. The current study reveals that the catalyst aging temperature is a more dominant factor than the aging duration in terms of the decrease in NO2 production performance through DOC. The DOC sample hydrothermally aged for 25 h at 750 °C has displayed the lowest NO2 to NOx ratio compared to the samples aged for 25 ~ 100 h at 650 °C. Also, in this study, the impact of hydrothermal aging of a DOC on the selective catalytic reduction (SCR) efficiency in a ‘DOC + SCR’ aftertreatment system was predicted by using transient SCR simulations. To validate the SCR simulation, this study has conducted a dynamometer test of a non-road heavy-duty diesel engine with employing a commercial ‘DOC + SCR’ system on the exhaust line. The current study has quantitatively estimated the effect of the variation in NO2 to NOx ratio due to the hydrothermal aging of DOC on the NOx removal efficiency of SCR.  相似文献   

15.
Vehicle rollover is a serious traffic accident. In order to accurately evaluate the possibility of untripped and some special tripped vehicle rollovers, and to prevent vehicle rollover under unpredictable variations of parameters and harsh driving conditions, a new rollover index and an anti-roll control strategy are proposed in this paper. Taking deflections of steering and suspension induced by the roll at the axles into consideration, a six degrees of freedom dynamic model is established, including lateral, yaw, roll, and vertical motions of sprung and unsprung masses. From the vehicle dynamics theory, a new rollover index is developed to predict vehicle rollover risk under both untripped and special tripped situations. This new rollover index is validated by Carsim simulations. In addition, an H-infinity controller with electro hydraulic brake system is optimised by genetic algorithm to improve the anti-rollover performance of the vehicle. The stability and robustness of the active rollover prevention control system are analysed by some numerical simulations. The results show that the control system can improve the critical speed of vehicle rollover obviously, and has a good robustness for variations in the number of passengers and longitude position of the centre of gravity.  相似文献   

16.
A route information based driving control algorithm was developed for an RE-EV which consists of two motorgenerators, MG1 and MG2. A threshold power which controls the engine on/off to charge the battery was obtained by an optimization process using route information, such as the vehicle velocity and altitude. The threshold power allows the vehicle to travel to the final destination while making the final battery SOC close to SOC low. Using the threshold power, route based control (RBC) was proposed by considering the driver’s characteristics and traffic conditions using the driving data base. In addition, a relationship between the threshold power and various initial battery SOC was obtained by off-line optimization. The performance of the RBC was evaluated by simulation and human-in-the-loop simulation (HILS) for city driving. It was found from the simulation and HILS results that the RBC achieved approximately 4 % to 12 % reduction in fuel consumption compared to the existing charge depleting/charge sustaining (CD/CS) driving control.  相似文献   

17.
Today, as people are spending increasing amounts of time in their cars, they have come to recognize that the car should function as a “residential” space. An eco-friendly indoor environment that provides comfort in terms of visual, tactile, and auditory senses is needed for the driver and the passengers. The quality of the car’s indoor environment was evaluated on various factors, such as indoor thermal comfort, indoor air quality, smell, and noise. For the indoor air quality, the typical pollutants that degrade the air quality are CO2, volatile organic compounds, and exhaust gases. Especially, CO2 has a direct relationship with drowsy driving which leads to traffic accidents. There have been many experimental and analytical studies to reduce the level of CO2 in a short time, but analyses of parameters that affect indoor CO2 concentration are insufficient and comprehensive standards for evaluating the car indoor CO2 concentration do not yet exist. In this study, several parameters were selected that can influence the reduction rate of CO2 concentration, and a series of computational analyses were conducted to study the results of these parameters in CO2 reduction. Based on this study, a prediction equation for CO2 concentration was derived. For this, a general full factorial design was used to evaluate the CO2 reduction characteristic based on various parameters (ventilation mode, boarding condition, vent angle, mass flow rate, and operation mode), and then their effects were analyzed to obtain an evaluation database of indoor air quality. From that, a prediction equation was derived to estimate the indoor air quality, enabling us to evaluate the CO2 concentration quickly that actually influences the human body without carrying out time-consuming CFD analyses for CO2 concentration. This study will be useful in designing HVAC systems and establishing the control logic for effective improvement of the car’s indoor air quality in the future.  相似文献   

18.
Computational model is developed to analyze aerodynamic loads and flow characteristics for an automobile, when the rear wing is placed above the trunk of the vehicle. The focus is on effects of the rear wing height that is investigated in four different positions. The relative wind incidence angle of the rear wing is equal in all configurations. Hence, the discrepancies in the results are only due to an influence of the rear wing position. Computations are performed by using the Reynolds-averaged Navier-Stokes equations along with the standard k-ε turbulence model and standard wall functions assuming the steady viscous fluid flow. While the lift force is positive (upforce) for the automobile without the rear wing, negative lift force (downforce) is obtained for all configurations with the rear wing in place. At the same time, the rear wing increases the automobile drag that is not favorable with respect to the automobile fuel consumption. However, this drawback is not that significant, as the rear wing considerably benefits the automobile traction and stability. An optimal automobile downforce-to-drag ratio is obtained for the rear wing placed at 39 % of the height between the upper surface of the automobile trunk and the automobile roof. Two characteristic large vortices develop in the automobile wake in configuration without the rear wing. They vanish with the rear wing placed close to the trunk, while they gradually restore with an increase in the wing mounting height.  相似文献   

19.
《JSAE Review》1996,17(2):213-217
We have developed a new decompression brake, which incorporates an original operation mechanism, in answer to user demands for more powerful brake performance. This decompression brake improves braking power by more than 50% compared with a conventional exhaust brake, when operated in tandem with an exhaust brake. The decompression brake contributes to safe driving, to alleviate driver fatigue, and to prolong brake lining life.This paper reports on the following subjects:
  • 1.(1)The principle and development of the original operation system.
  • 2.(2) Test results of performance and load analysis.
  相似文献   

20.
Urea-SCR systems have been widely used in diesel vehicles according to the strengthened NOx (Nitrogen Oxides) emission standard. The NOx removal efficiencies of the latest well optimized urea-SCR system are above 90 % at moderate exhaust gas temperature of 250 ~ 450 °C. However, a large amount of NOx is emitted from diesel vehicles at cold start or urban driving conditions, when the exhaust gas temperature is not high enough for SCR catalyst activation. Although many researchs have been stuied to improve NOx conversion efficiency at these low temperature conditions, it is still one of important technical issues. In this study, the effect of UWS injection at low exhaust gas temperature conditions is studied. This study uses a 3.4 L diesel engine equipped with a commertial urea SCR system. As a result, it is found that about 5 % of NOx removal efficiency is improved in the NRTC test when UWS injection starts at the SCR inlet temperature of 150 °C compared to 200 °C. It is also found that urea deposits can be formed on the wall of exhaust pipe, when the local wall temperature is lower than temperature of urea decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号