首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
公交客流量具有动态性,受多种因素的影响,不能或无法用精确的数学模型进行预测。通过对公交客流量预测的Elman和BP神经网络的建立、学习和训练,并以前三年的公交客流量、国内生产总值、工业总产值、城市人口数作为两种神经网络的输入神经元,第四年的公交客流量作为输出神经元,同时以合肥市公交客流量为例进行分析,结果表明:所建的Elman模型比BP模型的预测精度高,效果好。  相似文献   

2.
基于神经网络的公交客流预测   总被引:1,自引:0,他引:1  
公交客流量具有动态性,受多种因素的影响,不能或无法用精确的数学模型进行预测.通过对公交客流量预测的Elman和BP神经网络的建立、学习和训练,并以前三年的公交客流量、国内生产总值、工业总产值、城市人口数作为两种神经网络的输入神经元,第四年的公交客流量作为输出神经元,同时以合肥市公交客流量为例进行分析,结果表明:所建的Elman模型比BP模型的预测精度高,效果好.  相似文献   

3.
公交客流量具有动态性,受多种因素的影响,不能或无法用精确的数学模型进行预测。通过对公交客流量预测的Elman和BP神经网络的建立、学习和训练。并以前三年的公交客流量、国内生产总值、工业总产值、城市人口数作为两种神经网络的输入神经元,第四年的公交客流量作为输出神经元,同时以合肥市公交客流量为例进行分析,结果表明:所建的Elman模型比EBP模型的预测精度高,效果好。  相似文献   

4.
通过分析神经网络的作用机理和公交年客流量的影响冈素,以城市人口、居民收入、生产总值等9个因素作为输入神经元,输出神经元为每年的公交客流量,建立了公交客流预测的径向基神经网络模型(RBF)和BP神经网络模型,以合肥市公交量的调查数据为例,对网络进行学习与训练仿真实验,结果表明所建模型具有较高的预测精度,效果较好.  相似文献   

5.
6.
遗传神经网络在公交客流量预测中的应用研究   总被引:1,自引:0,他引:1  
全面考虑影响公交客流量的各个因素,建立遗传神经网络预测模型,并把其预测结果和神经网络BP算法的预测结果进行比较.这种方法具有很强的学习能力和自适应性,其预测结果优于神经网络BP算法的预测结果,故具有很好的应用价值。  相似文献   

7.
为提高公交客流量预测的精确度,将混沌理论和小波神经网络方法相结合应用于公交客流量预测。分别采用自相关法、伪最近邻域法计算公交客流量时间序列的时间延迟、嵌入维数,采用小数据量法计算其最大李雅普诺夫指数,证实该时间序列具有混沌特性。据此建立混沌-小波神经网络预测模型,进而对H省某市实际公交客流量进行预测。实验结果表明,相比于传统的BP神经网络预测法、LIBSVM预测法,该方法在均方误差(MSE)、平均绝对误差(MAE)、平均相对误差(MRE)上均具有更小的预测误差,因而可以有效地预测公交客流量。  相似文献   

8.
为提高港口吞吐量的预测精度,建立基于Adaboost算法改进的Elman神经网络预测模型,进行吞吐量的预测.首先对Elman神经网络进行多次训练和迭代,然后将每个Elman神经网络作为弱预测器,基于Adaboost算法将多个弱预测器加权组合,形成Elman-Adaboost强预测器模型.经过Adaboost算法优化的强预测器对误差较大的数据样本有更强的识别能力,可以实现对数据的动态增强学习.以宁波-舟山港2011-2017年的港口吞吐量数据为样本进行仿真,分别使用BP神经网络、Elman神经网络、BP-Adaboost神经网络以及Elman-Adaboost神经网络进行预测,比较四种模型的预测精度.研究结果表明:Elman-Adaboost强预测器模型用于港口吞吐量的预测,预测结果的相对误差最大值1.91%,最小值0.06%,可以将预测误差控制在2%以下,数据拟合效果更好预测精度更高,可以作为港口吞吐量预测的一种方法.  相似文献   

9.
本文首先根据北京城市轨道交通网络的特点,以静态非平衡分配模型中的最短路径分配为理论基础,实现历史客流在断面上的分配,得到具有参考价值的断面客流。然后通过大量BP神经网络建模试验,对北京城市轨道交通客流预测问题,建立了合理的预测模型。最后利用BP神经网络模型对13号线西直门站至2号线西直门站的换乘断面客流进行预测,并与最小二乘拟合结果进行对比分析,得出合理的客流预测结果。  相似文献   

10.
以湛江至海口航线为例,介绍了应用神经网络预测客流量的方法,预测检验结果表明,BP网络的预测精度很高,是解决诸如客流量预测这类高度非生问题行之有效的方法。  相似文献   

11.
地铁客流的变化规律存在着一定周期性和潮汐性,针对地铁客流的预测有助于提高城市轨道系统的运营效率,实现轨道交通智慧化运营。为提高地铁短时客流预测结果的准确度,提出了一种基于Logistic混沌映射麻雀算法(Logistic-SSA)优化BP神经网络的地铁客流短时预测模型。该模型通过Logistic混沌映射初始化麻雀算法种群,再利用改进后的麻雀算法优化BP神经网络,达到提高BP神经网络的全局搜索能力和收敛效率;以深圳地铁西乡站进、出站AFC刷卡数据为例,利用构建的预测模型开展客流预测实验,并通过3种准确性评价指标(MAE、RMSE、MAPE),评价改进前后模型预测的准确性。研究结果表明:改进的Logistic-SSA-BP预测模型平均绝对百分误差分别为14.96%和13.73%;与传统BP预测模型相比,其客流预测结果具有更高的准确性。  相似文献   

12.
针对轨道交通短时客流具有动态性、非线性、不确定性的特点,提出一种基于遗传算法与小波神经网络的轨道交通短时客流预测方法.该方法利用具有全局搜索最优的遗传算法优化小波神经网络,有效的避免了神经网络易陷入局部最小值的缺陷.在分析轨道交通短时客流的特征上,利用实测数据对模型进行验证.结果表明,相比遗传算法优化的BP神经网络模型,单一的小波神经网络模型其预测精度更高,误差更小,能在实际中应用.  相似文献   

13.
城市轨道交通短期客流的预测是制定列车调度计划、车站客运组织工作等的关键。文章在研究城市轨道交通的断面客流特征的基础上,建立基于动态反馈神经网络的城市轨道交通短期客流预测模型,提出通过若干组连续历史断面客流数据训练动态连续的神经网络,以此对未来客流进行预测;并以北京轨道交通某日早高峰客流为例进行分析,验证了该模型与方法的有效性。  相似文献   

14.
目前,为了改善交通情况和提高公共交通的使用率,法国Clermont-Ferrand正在进行该市一条有轨电车北延伸的可行性研究。以该市实际的交通情况为基础,使用经典四步骤法,完成了该有轨电车延伸段的客流预测。在研究期间,还使用了法国交通软件——MOSTRA。对于交通方式划分,使用了交通费用、行程时间、舒适度以及换乘次数作为参数。  相似文献   

15.
短时客流预测是轨道交通运营调度中的先导工作,其中短时预测的时效性尤为重要,预测中既要保证预测精度同时也要提升预测效率,提出基于集成学习的XGBoost算法进行轨道客流预测.以西安市地铁二号线AFC刷卡数据为例,在数据预处理过程中发现特殊节假日、休息日及工作日具有不同的客流特征,在工作日客流波动更为剧烈,因此,采用工作日客流量进行验证.将预测结果与BP神经网络模型、ARM A模型进行对比,结果表明:XG-Boost算法具有更高的预测精度,同时计算时间更短.研究结果可为制定轨道交通动态运营提供参考,同时,将机器学习运用到客流预测中也能增大预测方法的可选择性.  相似文献   

16.
目前,为了改善交通情况和提高公共交通的使用率.法国Clermont-Ferrand正在进行该市一条有轨电车北延伸的可行性研究。以该市实际的交通情况为基础,使用经典四步骤法,完成了该有轨电车延伸段的客流预测。在研究期间,还使用了法国交通软件——MOSTRA。对于交通方式划分,使用了交通费用、行程时间、舒适度以及换乘次数作为参数。  相似文献   

17.
根据大连市公交IC卡的历史数据绘制公交线路客流曲线,采用有序聚类Fisher算法划分公交峰值区间,在具有典型特征的峰值区间内进行有针对性的公交客流调查,可得到实际客流数据样本.通过将公交IC卡客流数据与随车客流调查数据相结合,建立不同峰值条件下预测客流的回归方程,可实现对不同峰值区间内总体客流量的预测.  相似文献   

18.
基于公交IC卡数据信息的客流预测方法研究   总被引:1,自引:0,他引:1  
根据大连市公交IC卡的历史数据绘制公交线路客流曲线,采用有序聚类Fisher算法划分公交峰值区间,在具有典型特征的峰值区间内进行有针对性的公交客流调查,可得到实际客流数据样本。通过将3EIC卡客流数据与随车客流调查数据相结合,建立不同峰值条件下预测客流的回归方程,可实现对不同峰值区间内总体客流量的预测。  相似文献   

19.
在分析铁路货运量预测方法的基础上,针对标准BP神经网络的不足,提出改进的BP神经网络预测模型。首先,利用动态陡度因子来改变激励函数的陡峭程度,以此来得到更好的激励函数响应特征以及更好的非线性表达能力;其次,利用附加动量因子,通过对以前经验的积累,既降低了神经网络对误差曲面的局部细节敏感特性,又较好的遏制了神经网络易于限于局部最小的缺陷;最后,采取改变学习率的方法,给定一个较大的学习率初始值,在学习的过程中学习率不断减小,网络最终趋于稳定。改进BP算法既可以得到更优的解,还能够缩短训练时间。利用全国铁路货运量的相关数据对改进BP神经网络进行了验证。验证的结果表明,改进的BP神经网络预测模型在相对误差和迭代次数上有较大改善,对铁路的货运量预测很有效。  相似文献   

20.
针对铁路客运量在时序上的复杂非线性特征,采用径向基函数(RBF)神经网络对铁路客运量时间序列进行预测.用自相关分析技术分析时间序列的延迟特性,据此确定RBF神经网络的输入、输出向量,建立了基于MATLAB7.0环境下的RBF神经网络客运量预测模型,并用大连站实际客运量数据进行了验证.结果表明,该模型拟合精度和预测精度较高、计算速度较快.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号