首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对某燃料电池车空调压缩机高转速下车内噪声异常问题,通过噪声频谱分析与模态测试等手段,分析得出空调压缩机支架与空调压缩机转速频率产生共振。根据车辆实际情况增加加强支架,提升空调压缩机支架模态特性,避免发生共振。  相似文献   

2.
为解决某轻卡ECU支架共振问题,文章基于Nastran有限元法对ECU支架共振问题进行了共振问题原因分析及性能优化研究,通过对ECU基础状态方案进行了模态分析,得出了其一阶频率与发动机怠速频率存在共振,并给出了ECU支架优化方案,经CAE模态分析,同时通过振动加速度测试试验验证,共振问题得到优化解决。  相似文献   

3.
针对某车型加速过程中发动机转速2800rpm时引起的车内轰鸣问题,利用LMS Test.lab测试系统,对该车进行NVH测试。通过频谱分析,找到引发车内轰鸣问题的频率范围,对相近模态的零部件进行排查,判断为空调压缩机系统模态偏低,与发动机工作频率产生共振导致车内轰鸣,降低了车内声品质。为此基于有限元仿真方法提高压缩机系统的模态,避免与发动机在常用转速下的共振,改善了车内轰鸣噪声。  相似文献   

4.
针对某自主品牌纯电动乘用车怠速开空调车内噪声及振动过大的问题,经详细分析及试验诊断后,排查出压缩机工作转速在4000rpm时车内舒适性较差;通过传递路径及模态分析得出压缩机在高转速下与压缩机支架产生共振;结合样车实际情况,在不影响性能情况下,提出优化支架及框梁结构的方案;通过试验验证表明,优化方案有效降低车内噪声和振动,提高乘坐舒适性。  相似文献   

5.
汽车空调压缩机是汽车空调制冷系统的心脏,起着压缩制冷剂蒸汽的作用。空调压缩机通过支架安装于发动机缸体上,它处于振动剧烈的工作环境下。因此,空调压缩机支架设计方案直接影响汽车发动机的可靠性和整机NVH性能。通过对空调压缩机支架进行模态分析和振动噪声试验测试,对汽车进行噪声优化分析及降低噪声,提高汽车的NVH性能。  相似文献   

6.
文章以对东安汽发汽油发动机空调压缩机支架结构优化为实例,通过CAE对空调压缩机、空调压缩机支架及轮系组成的系统进行模态分析,根据CAE分析结论对空调压缩机支架进行结构优化,介绍了系统模态对空调压缩机支架结构强度的影响。优点如下:①CAE模态分析有效的分析出空调压缩机支架在动态载荷下变形趋势;②通过分析结论对空调压缩机支架进行结构优化,有效的提高空调压缩机结构强度,提高其工作可靠性,缩短了设计周期。  相似文献   

7.
朱志文 《时代汽车》2024,(4):165-167
纯电动汽车空调压缩机制冷和制热需要不仅包含车内需求,还需冷却或加热电池,压缩机负载增大。汽油车压缩机的转速和发动机有固定速比,常用转速840~3600rpm,电动车压缩机转速由负载决定,通常为800~8000rpm。纯电动车没有发动机屏蔽,怠速压缩机噪声变得特别显著。需优化压缩机支架模态和压缩机刚体模态与车内空腔模态的避频、方向盘模态避频等,来解决车内噪声和振动问题。  相似文献   

8.
针对某SUV AT车型起步工况"哼棱"异响问题,通过问题噪声频谱分析、模态/结构灵敏度验证等分析手段,系统的排查了异响问题的激励源、传递路径及振动体,得出异响产生机理是发动机轮系激励引起发动机悬置支架共振。借助有限元分析评估发动机悬置优化方案,通过优化悬置主簧结构,悬置支架模态避开轮系激励频率,解决起步异响问题。  相似文献   

9.
为解决公司某车型空调压缩机支架在道路试验中发生开裂失效的问题,通过运用有限元软件建立压缩机支架结构的有限元模型,运用CAE手段对压缩机支架总成结构进行动力学特性分析,以期找出断裂失效的原因.分析结果表明支架固有频率与发动机激励频率接近,风险位置与整车道路试验开裂位置基本吻合.针对危险位置提出优化方案,提高支架结构固有频率.通过提高支架的固有频率,能够有效改善支架结构的应力分布.跟踪路试耐久试验,验证方案的可行性.通过利用CAE分析技术在产品开发过程中的应用,有效找到问题原因并有针对性地加以优化,从而缩短开发周期和节约成本.  相似文献   

10.
空调压缩机是空调系统的核心部件,其通过支架安装在电驱动单元上,如果设计不合理会导致模态太低,引起共振,并影响整车NVH性能。文章从支架设计之初,利用仿真软件对系统进行模态分析,通过调整压缩机的空间布置及支架的设计,不断完善方案,最终满足模态的设计要求,并由此总结出影响模态的几个关键点,为后续设计提供依据。  相似文献   

11.
为了提高压缩机支架的NVH性能,文章采用有限元的方法对某发动机的压缩机支架进行优化分析,使用Optistruct软件对支架重新设计,根据优化结果进行圆滑过渡,并且考虑了降低质量以及增加刚度的目的,对支架结构较多的部分进行挖空处理,使支架结构形成一系列的加强筋,改善支架的刚度,提高支架的1阶固有频率.通过对结果的分析发现,不仅使支架质量减小了0.04 kg,而且支架的1阶模态频率也提高了77.7%,提升了发动机的NVH性能.  相似文献   

12.
故障现象:一辆1994款本田雅阁轿车,装备2.2LF22B1发动机,因空调压缩机不工作要求检修。故障诊断:打开空调开关及鼓风机开关,压缩机不工作,冷凝器风扇也不工作。测量压缩机电源端无电压,检测空调继电器正常,而继电器搭铁端无搭铁信号,此信号是由发动机控制模块控制的。当人为给继电器控制端搭铁,压缩机立刻吸合而工作,从而说明问题在控制信号上。压缩机继电器受控于发动机控制模块A15脚搭铁,而发动机控制模块A15脚又受控于发动机控制模块B5脚搭铁。B5脚与地之间串联有4个开关:鼓风机开关、空调开关、温控开关及压力开关,而风扇继电器的控…  相似文献   

13.
我们针对某型柴油机进气歧管共振产生噪声问题,对进气歧管支架进行进行模态分析,根据结果对进气歧管支架进行优化,并对优化后的结构进行模态分析,得出最终的优化方案。使进气歧管支架避开共振频率范围,提高发动机NVH性能。  相似文献   

14.
整车在路试过程中,多次出现发电机支撑螺栓断裂和节气门损坏的情况,通过对发电机和节气门的振动测试发现,发电机与节气门在整车行驶过程中与发动机存在共振现象,发电机的振动位移和节气门的振动加速度超出了设计指标的要求,致使发电机辅助挂脚处螺栓断裂和节气门损坏。分别通过对节气门和发电机及其支架进行振动-噪声-平顺性(NVH)振动测试和计算机辅助工程(CAE)分析后,为了能够解决上述共振问题,通过增加发电机支架辅助支撑来增强发电机系统的强度和刚度,提升了系统的固有模态,避免了发动机转速范围内的共振现象  相似文献   

15.
纯电动汽车因结构与传统汽油车有差异,所以有着独特的噪声特点。针对某纯电动车在开启空调压缩机后,驾驶舱内存在较为明显的振动噪声这一问题,详细解析车辆行驶在怠速、高速、减速不同工况下,通过优化空调压缩机转速策略,降低压缩机运转功率,避开与压缩机支架模态1阶频率共振;提高压缩机转速下降速度,使压缩机振动噪声与环境噪声同比下降;消减压缩机内部动静盘运行不良摩擦,降低了压缩机作为源头的噪声大小等一系列改善措施。实车确认改善后的压缩机运转噪声得到很大的降低,从而使乘客舱内人体感受到的压缩机振动噪声都在可以接受的范围之内。  相似文献   

16.
阐述了传递路径分析(OPAX)的估算方法及载荷力识别方法.针对某车辆全负荷加速行驶到为3650 r/min时驾驶员附近4阶噪声大的问题,建立了“激励源-驾驶员位置”传递路径模型,并进行了传递路径数据分析.结果表明,导致该车激励力变大的原因是发动机4阶激励与发动机左悬置支架模态重合产生共振.在发动机左悬置支架安装动态吸振器并进行了整车试验.结果表明,车内噪声整体下降2.4 dB(A),满足相关要求.  相似文献   

17.
景逸汽车动力总成悬置支架的优化设计   总被引:2,自引:0,他引:2  
建立了景逸汽车原动力总成悬置支架几何模型及有限元模型.模态分析结果表明.原支架设计的固有频率为267 Hz,与发动机工作转速下的激励频率相接近,在接近共振转速下会引起较大幅度的振动.对该悬置支架提出了4种优化设计结构方案,并根据分析结果选择其中较好的方案.道路试验结果表明,经过优化后的悬置支架可使整车振动和车内噪声明显降低.  相似文献   

18.
电动汽车与传统燃油车辆振动噪声特点存在较大差别,真空泵、水泵、空调压缩机等电辅助系统噪声凸显;某项目纯电动汽车静置车内噪声不大,但制动过程可明显听到真空泵噪声.针对该问题,进行了真空泵支架模态优化,解决支架与真空泵运转的共振;对真空泵隔振橡胶垫进行了调校,使真空泵隔振率及被动侧振动得到优化;对真空管路进行了固定处理及隔振优化,使真空管路传递的结构噪声大大降低.经过以上结构噪声传递路径优化,车内振动噪声水平得到大大降低,真空泵噪声在车内基本无感觉.  相似文献   

19.
根据发动机出现的缸体裂纹情况,应用模态测试方法和有限元方法,通过对空调压缩机支架的模态分析,找出缸体裂纹的根本原因。  相似文献   

20.
针对某车用发动机出现的高压油管断裂的问题,经过试验测试,确定了高压油管断裂的原因。并提出了两种解决措施,一是改变喷油系支架刚度来改变其固有频率,使共振转速出现在发动机不常用的转速范围内;二是将喷油泵与驱动齿轮间的连接方式改用法兰连接,以避免由于喷油系连接轴的加工误差和安装同轴度的影响。试验表明,该方案对油管泵端的振动控制得非常好,避免了喷油泵端共振的发生,可以有效解决高压油管的振动问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号