共查询到20条相似文献,搜索用时 0 毫秒
1.
单侧墙体模板技术具有施工方便、操作简单、速度快、受力合理、省工省料等优点,此技术在大型结构施工中已逐步推广应用。结合北京地铁十四号线郭庄子站~大井站区间风井(兼轨排井)单侧模板支撑体系施工情况,对复杂结构下单侧墙体模板支架的使用进行阐述,为今后类似工程施工提供参考。 相似文献
2.
为满足地铁长大隧道通风需求或车站活塞风功能需要,地铁隧道需要设置区间风井,其以往施工方法多数采用明挖顺筑法.但由于明挖顺筑法施工需涉及交通疏解、管线迁改、绿化移植等前期工作,且多数风井均位于闹市区,交通疏解、管线迁改、绿化移植等前期工作协调难度大,往往贻误工期.因此,设计阶段对区间风井设计方案研究、比选就显得尤为重要.... 相似文献
3.
地铁长大区间工程地质条件复杂多变,地面及地下建(构)筑物制约因素较多。文章以深圳地铁 14 号线布吉站—石芽玲站区间及区间风井为工程背景,结合区间风井周边环境条件、工程实施条件,从区间风井设置要求、设计原则、设计方案比选、施工设计等方面对长大盾构区间风井设计及盾构施工设计进行研究,确定合理的风井位置、风井尺寸和盾构掘进及始发模式,以期为后续类似长大区间设计提供参考。 相似文献
4.
新建地铁隧道与既有周边建(构)筑物的关系往往是影响整个区间工程安全及进度的关键因素,其中浅埋隧道穿越既有楼房或桥梁桩基础的问题是比较复杂的一类。本文以长春火车北广场站—北亚泰大街站区间隧道矿山法下穿楼房桩基为例,介绍了本隧道工程近接桩基的设计思路及过程。采取桩基从侧面穿过马蹄形隧道而不侵入建筑限界的技术方案,成功解决了侵入桩基的隧道结构设计和施工难点,最终区间工程安全穿越桩基段并顺利通车。 相似文献
5.
许赫 《现代城市轨道交通》2022,(2):61-64
为有效避免地铁事故的发生,应在地铁施工中引入精确的测量手段和有效及时的反馈技术。文章依托北京地铁宣武门站工程,采用竖井联系三角测量法,将地下与地上部分进行关联,通过对施工过程中可能出现的地表沉降、拱顶沉降、收敛变形等现象进行施工测量,对大量测量数据进行处理和分析得出沉降变化规律;通过回归分析,预测最大应力值和最大变形值等参数。将测量数据反馈至施工和设计方,根据现场情况及时调整施工和设计方案及参数,可有效保证施工安全,减少不必要损失。 相似文献
6.
浅埋暗挖法地铁区间隧道零距离下穿既有线施工技术 总被引:4,自引:1,他引:3
赵克生 《铁道标准设计通讯》2008,(12)
北京地铁10号线国贸站—双井站区间从既有地铁1号线下穿过,两者竖向净距只有1.079 m。采用国内首次应用的矩形断面紧贴地铁1号线底板穿过的浅埋暗挖法施工技术,并结合全断面袖阀管注浆和远程自动化监测等措施,有效控制了既有线结构的沉降。 相似文献
7.
8.
什么条件下地铁地下区间中部需设置区间风井,在相关设计规范及设计标准中均没有明确规定,争议较多。提供一种基于行车模拟牵引计算、在一定研究前提条件下确定较长地下区间是否设置中间风井的理论研究方法,提出是否设置区间风井的判定标准及具体的研究实操步骤,并通过实例结果分析,明确设置区间风井的最小站间距临界值,为相关领域内的研究者、决策者及地铁建设、运营单位提供参考。 相似文献
9.
针对高速地铁列车通过隧道区间风井扩大段时引起的乘客耳感不适,依托某带隧道风井的地铁线路区间及设计时速120 km的8车编组地铁列车,以ATO运行模式开展实车试验;在确保试验可重复性的基础上,探究列车站间运行时各车厢内外压力变化规律,分析区间风井扩大段引起车内外压力突变的原因。结果表明:车头和车尾先后高速通过风井段时,相当于经历了隧道断面面积先扩大再缩小的变化过程,会形成类似于车头和车尾驶出和进入隧道洞口的物理现象,车头、车尾通过区间风井扩大段会导致车外压力的上升、下降,此时产生的压力突变是导致耳感不适的主要原因;尾车至头车的车外压力正峰值和负峰值全程呈上升趋势,头车和尾车压力变化峰峰值接近,分别为1 617和1 723 Pa,5车压力变化峰峰值最小,为964 Pa;列车通过区间风井扩大段时,车内压力变化幅值受运行速度的影响较大,速度为113 km·h-1时,任意3和1 s内的车内压力变化幅值均超过相应标准中的耳感舒适性要求。 相似文献
10.
王瑞峰 《现代城市轨道交通》2011,(6):69-71,78
沈阳地铁2号线南延线起点区间盾构井,其结构受力具有典型的空间特性,目前常用的平面框架模型在准确性及精度上给设计带来一定的偏差。文章建立了空间结构模型,对其进行整体受力计算分析,并对其框架梁、墙、柱等重要组成构件,在施工和使用阶段的受力特性进行深入对比和分析,提出了各结构构件在不同设计阶段的要点,对本区间盾构井结构进行了更经济、合理的设计。 相似文献
11.
研究目的:探讨地铁地下区间中间风机房最优配电方案,保证事故情况下大功率隧道风机能可靠启动,把地铁事故危害降低到最小.研究结论:地铁地下区间中间风机房有功率90 kW风机两台,风机房总负载容量超过200 kW,且配电距离超过250 m的情况下,设计中一般采用高压配电方案.大功率风机选择软启动方式,可有效降低变压器低压侧的... 相似文献
12.
地铁车站暗挖法施工中导洞开挖方案比较 总被引:1,自引:0,他引:1
目前洞桩法是浅埋暗挖地铁车站的主要施工方法,但是由于洞桩法设置的导洞多、导洞间距小,所以导洞的开挖一直是设计者和施工者探索的重要课题.以北京地铁7号线双井站八导洞开挖为工程背景,利用有限元软件Ansys建立模型,并结合现场实际监测数据对两种方案进行对比分析,得到了两种不同导洞施工方案的地表沉降变化规律,对类似工程的施工具有参考价值. 相似文献
13.
研究目的:在地铁施工中使用可靠的监测与信息反馈技术手段能够有效防止事故的发生。采用竖井联系三角形测量,把地上和地下联系起来。加强对变形、收敛、拱顶下沉以及地面沉降的监测,并将各项监测数据及时整理、绘制位移-时间等变化规律曲线,对初期时态曲线进行回归分析,可预测出可能出现的最大变形值、应力值等重要参数,为暗挖风险预控提供了重要依据。研究结论:应用严密的施工测量与信息反馈技术,时时掌握被监测物的变形情况,进行预测,及时调整设计和施工参数,为地铁施工提供了准确的依据,对地铁建设和同类地铁施工环境具有重要借鉴和参考价值。 相似文献
14.
大跨度地铁浅埋暗挖法施工技术 总被引:2,自引:0,他引:2
卜晓斌 《铁道标准设计通讯》2010,(3):105-108
沈阳地铁1号线沈阳站车站为双层岛式站台,具有埋深浅、跨度大、跨越胜利大街及中华路地质条件复杂、采用洞桩法暗挖施工的特点。介绍在复杂环境下,车站暗挖施工方案和技术措施。施工关键是通过合理确定上下6个导洞的开挖顺序,避免群洞效应所引起的地面沉降;施工过程中受力转换是工程施工的难点。 相似文献
15.
王安东 《现代城市轨道交通》2011,(Z1):93-94
在地铁工程设计与施工中,围护结构及支撑布置是保障安全和节约成本的重要基础。结合北京地铁8号线林萃桥站—森林公园南门站区间南端明挖段端头井设计,对围护结构及支撑布置形式、支撑施工技术及基坑施工的相关技术进行了探讨。 相似文献
16.
17.
沈峰 《现代城市轨道交通》2015,(1):48-51
杭州地铁2号线钱塘江区间所处周边为高深埋、高水压环境,盾构施工中采用左、右线盾构独立进行冻结、水土回填,以及井内掘进进出洞施工的土压平衡盾构穿越中间风井施工技术,安全顺利地完成盾构穿越中间风井施工,有效地解决了盾构进出洞的风险问题。 相似文献
18.
《现代城市轨道交通》2018,(12)
以南宁地铁5号线一期工程跨邕江段区间为例,通过行车模拟牵引计算的结果并结合车站方案,得出不设区间风井的临界条件;进一步从工程实施难易度和经济性等方面,分析通过加长车站轮廓缩减区间长度的合理性,进而得出设置该区间风井是必要的,且具有较为合理的选址方案。最后总结出长大区间设置区间风井时需要着重注意的几个方面,为其他线路提供借鉴。 相似文献
19.
20.
1 工程概况
广州地铁3号线北延段同和—永泰站地下区间位于同泰路段,沿同泰路呈南北走向.区间中间风井位于规划26 m宽的同泰路北侧地下,兼作为盾构始发井与轨排吊装井,满足盾构始发及轨排吊装的施工要求.中间风井有效中心里程为ZD K-6-989.999,起点里程ZD K-7-005.899,终点里程ZDK-6-974.099,中间风井全长31.80 m(见图1).井口地面高程为51.8 m,基坑开挖深度约39 m.由于中间风井以北区间隧道局部穿越<9Z>微风化震旦系混合花岗岩地层,岩石天然单轴极限抗压强度平均值为81.87 MPa,最高值达169 MPa;以南区间隧道局部穿越<9H>微风化燕山系花岗岩,岩石天然单轴极限抗压强度平均值为106.1 MPa,最高值达151 MPa,因此中间风井兼做两端暗挖法施工竖井.施工组织简图见图2. 相似文献