首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于动力学理论并利用多体动力学仿真软件UM建立30 t轴重重载车辆-轨道空间耦合模型,分析高低/轨向复合不平顺波长、幅值对重载车辆动力性能的影响,确定最不利波长并提出高低/轨向复合不平顺幅值管理建议值。研究结果表明:(1)高低/轨向复合不平顺的最不利波长为10 m,波长大于40 m后,波长对动力性能影响较小;(2)高低/轨向复合不平顺中的高低不平顺成分幅值变化对轮重减载率、车体垂向加速度等指标影响显著,而轨向不平顺成分幅值变化对脱轨系数、轮重减载率、轮轨横向力、车体横向加速度等指标影响较大;(3)仅开行重载货车的线路,高低/轨向复合不平顺偏差限值I~Ⅳ级管理标准建议分别取为4 mm/5 mm、7 mm/8 mm、10 mm/10 mm、14 mm/13 mm。  相似文献   

2.
为研究无砟轨道轨向和高低不平顺对车辆-轨道耦合系统的动态影响,确定各不平顺值下的限速标准,分别建立CRH2A型车和CRH5型车计算模型。通过3σ原理将不平顺样本的10 m弦测值拟合为正态分布,取其μ±3σ的值为该样本不平顺值。计算不同速度等级、不同程度高低和轨向不平顺值时,两种车型的动力响应。研究结果表明:多数工况下CRH5型车所确定的不平顺限值小于CRH2A型车,说明CRH2A型车动力学性能更优;轨向不平顺主要引起车辆横向扰动,高低不平顺主要引起车辆垂向扰动,说明某方向上的不平顺激励主要对同方向造成扰动;列车对于横向的激励较垂向激励更为敏感,因此轨向不平顺限值通常要小于高低不平顺限值;计算得到各动态不平顺值对应的限制速度,利用轨道动静态几何不平顺之间的关系转化得到各速度等级下轨道静态几何尺寸容许偏差管理值,对规范内容有一定的补充。  相似文献   

3.
基于梁轨相互作用原理,利用有限元方法,建立桥上无砟轨道无缝线路模型,桥梁温度荷载分别取均匀温度荷载、沿梁高的温度梯度荷载以及沿梁高和梁宽双向温度梯度荷载3种工况,计算分析桥梁在不同温度荷载作用下桥上无缝线路的平顺性。计算结果表明:桥梁受沿梁高温度梯度荷载作用时对钢轨竖向位移的影响最大,线路的短波、中波高低不平顺均超过规范限值,长波高低不平顺未超限;桥梁在沿梁高和梁宽双向温度梯度荷载作用下,线路的中波高低不平顺稍稍超限,短波高低不平顺接近规范限值,长波高低不平顺有较大余量;桥梁在均匀温度荷载作用下,线路的高低不平顺均远小于限值。  相似文献   

4.
为研究均匀温度荷载与不均匀温度荷载对连续梁桥上无砟轨道无缝线路纵向力和线路几何形位的影响,基于梁轨作用原理和有限元法,建立连续梁桥上C RT SⅢ型板式无砟轨道空间耦合模型,分析在桥梁整体升温与不均匀温度荷载作用下无缝线路的变形,并对比2种温度荷载对无缝线路几何形位的影响.研究结果表明:整体升温与不均匀温度荷载作用下无缝线路受力与变形结果差异明显,两者间的钢轨横垂向位移的差异随阴阳面温差荷载增大而增大,主要影响轨道高低不平顺与水平偏差;连续梁上的钢轨水平偏差,轨距偏差和轨向偏差比线路两端简支梁要大,连续梁部分的高低偏差比简支梁要小;当桥梁阴阳面温差荷载最大时,连续梁两端出现高低偏差最大负值,最大值为?3.475 mm,大于其限值±2 mm,当连续梁跨度超过135 m时桥梁变形限值超出设计规范规定变形限值;在高速铁路桥上无缝线路设计时,应考虑桥梁不均匀温度荷载作用对轨道几何形位的影响,特别注意其对高低不平顺的影响.  相似文献   

5.
研究目的:桥梁和桥墩在温度效应作用下会发生翘曲而引起轨面几何形态的变化。由于桥台受温度作用变形较小,当与桥台相邻桥墩(首墩)高度较大时就可能引起轨道几何形位超限。本文以高速铁路6×32 m简支箱梁桥为研究对象,基于隔枕校核的方法,针对桥梁结构温度效应引起的基础变形形式,提出高速铁路32 m简支箱梁首墩高度合理取值范围的拟合计算公式。研究结论:(1)当首墩超过某一限值时,桥梁和桥墩在温度作用下将引起轨道高低和方向的几何形位超限,桥梁设计时不能忽视桥墩、桥梁温度效应引起的不平顺;(2)满足不平顺校核值的首墩高度与温度的关系式均可由H=a/ΔTb+c拟合;建议分别考虑桥墩升温耦合桥梁竖向正温差、桥墩降温耦合桥梁竖向负温差以及桥墩横向温差三种计算工况,并均以中波不平顺校核方法(隔8枕校核值)确定首墩高度限值;(3)建议将首墩高度限值纳入高铁桥梁设计规范;(4)该研究成果对于指导桥墩设计、施工,提高高速铁路桥上无缝线路的平顺性具有参考价值。  相似文献   

6.
研究目的:混凝土桥与路基或钢桥相连时,在桥梁温度变化时,由于梁缝两侧横向伸缩位移的差异会对桥上无砟轨道结构受力及轨向不平顺产生影响。本文通过建立线、板、桥、墩一体化空间耦合模型,分析梁缝附近轨道结构受力及轨向不平顺的影响因素,并确定主要影响因素对应的取值范围,从而为后续桥梁支座、线间距等的设计提供理论指导。研究结论:(1)轨道板温度变化会引起轨距改变,但不会造成轨距超限;(2)CA砂浆层与轨道摩擦阻力在纵向与横向上的分配系数以及桥墩的横向水平刚度对轨向不平顺及凸台受力等影响较小,但钢梁的温度变化幅度及横向固定支座距线路中心线的距离会显著影响凸台受力及轨向不平顺;(3)依据轨向不平顺限值确定了不同桥梁温升幅度及线间距条件下的横向固定支座与活动支座之间的距离限值,为桥梁支座设置提供理论指导;(4)该研究成果可应用于铁路无砟轨道设计中。  相似文献   

7.
以长沙中低速磁浮列车和25 m跨径简支梁为对象,建立包含完整悬浮控制系统和细致轨道结构的磁浮车辆-轨道-桥梁垂向耦合振动模型,编制数值仿真程序,计算车辆以80 km/h速度通过不平顺线路时车轨桥耦合动力学响应,利用已有文献测试结果初步验证仿真模型。结果表明,车体的垂向振动很小,悬浮间隙波动量不超过0. 6 mm,最大动态悬浮力占额定悬浮力的24%,中低速磁浮车辆运行平稳,电磁铁动荷载系数低。桥梁跨中垂向挠度为2. 66 mm,小于磁浮简支梁挠跨比设计限值;跨中轨缝处F轨最大垂向位移为3. 04 mm,其中包含轨排自身弹性变形产生的0. 4 mm垂向位移,约占F轨总位移的13%。梁端和跨中处伸缩接头很好地限制F轨端部变形,但F轨端部垂向加速度幅值超过2g,约为中部的4倍,这对F轨伸缩缝连接副提出较高要求。  相似文献   

8.
为研究温度梯度荷载对高速铁路大跨度连续梁桥上CRTSⅠ型双块式无砟轨道的影响,基于梁-板-轨相互作用原理建立无缝线路计算模型,分析了轨道板竖向温梯荷载和阴阳面横向温梯荷载作用下轨道结构的力学特性,并采用隔枕校核值研究了两种荷载对高低和轨向静态不平顺的影响.研究结果表明:轨道板竖向温梯荷载对钢轨垂向位移和中长波高低不平顺...  相似文献   

9.
某开通时间较短的高速铁路线路受连续降雨影响,路基沉降快速发展,导致部分区段轨道结构发生变形,使轨道不平顺幅值明显增加,引起车体振动加剧,对列车运行的安全性和稳定性造成影响。为了研究路基沉降引起的轨道不平顺对车体振动的影响,选取典型路基沉降区段连续4次动态检测数据进行时频特征分析,结合建立的车辆-有砟轨道空间耦合动力学仿真模型,研究路基沉降区段轨道不平顺和车体振动加速度之间的映射关系,获得了路基沉降不平顺波长和状态演变对车辆动力响应的影响规律。研究结果表明:降雨导致的路基沉降对高低不平顺和车体垂向加速度的影响显著,对轨向不平顺和车体横向加速度的影响较小;路基沉降区段的高低不平顺与车体垂向加速度幅值变化趋势和振动频率基本相同,42~70 m波长高低不平顺的幅值增加是造成车体垂向振动加剧的主要原因;依据仿真结果,路基沉降引起的高低不平顺幅值急剧增加会造成行车过程中局部轮轨垂向力显著减小,导致轮重减载率显著增加;对于速度等级250 km/h的线路,建议雨后重点盯控路基沉降点长波高低不平顺的变化,针对车体垂向振动加速度不良区段的养护维修作业,应着重调整42~70 m波长高低不平顺幅值,以保障车辆...  相似文献   

10.
通过对桥梁徐变上拱设计和相应规定、轨道不平顺检测方法、实测资料以及线路规范的对比和理论计算,进行高铁常用跨度预应力混凝土简支梁桥上轨道产生波长为32 m的轻微周期性不平顺现象研究。结果表明:线路、桥梁规范中线路高低Ⅰ级管理值、梁跨竖向残余变形的规定是一致的;轨面不平顺静、动态检测结果不可以用来直接对比;京沪高铁桥上轨道周期不平顺的桥跨长度占比随着时间发展逐渐增大,开通4年后占比持平至约66%,桥上轨道周期性不平顺峰值均值、标准差及变异系数分别约为2.28 mm,0.57 mm和0.25;开通5年后98.4%,99.9%和100%的桥上轨道周期性高低不平顺峰值分别小于5,6和7 mm;当连续多跨简支梁徐变值均大于3 mm时,线路TQI高低已超过规范管理限值,建议通过轨面设置反预拱度,避免由梁体徐变带来的大面积轨道精调作业。  相似文献   

11.
应用车辆-轨道耦合动力学理论和平稳随机过程理论,借助车辆-轨道垂向耦合频域分析模型,以轨道高低不平顺谱为输入激励,提出基于车辆垂向舒适性指标(车体加速度和 Sperling 指标)估计高低不平顺谱限值的方法。以我国武广客运专线及德国低干扰轨道高低不平顺谱为例,对350 km/h行车速度时的谱限值进行了估计。通过对比时域、频域模型计算结果,对所估计谱限值进行了校核,校核分析结果表明,频域模型计算结果与时域结果吻合较好,说明了所估计谱限值的合理性。分析方法及研究结果可为高速铁路轨道不平顺管理提供参考。  相似文献   

12.
高墩大跨桥梁墩身高,柔性大,在温度梯度的作用下桥墩容易产生较大的变形,这种变形传递到梁体,从而进一步作用在轨道结构上,使其产生不平顺,影响行车质量,而列车在线路上高速行驶时对线路平顺性要求较高。针对这一现实情况,文章通过大型有限元软件,以某高墩大跨连续梁桥为例,建立桥墩-梁体-轨道结构模型,分析钢轨在桥墩整体升温和纵横向温度梯度作用下产生的位移,并参照国内现有的评判标准,计算钢轨不平顺值,分析不同的温度荷载对轨道结构平顺性的影响,最终得出如下结论:桥墩整体温升会影响无缝线路的竖向平顺性;桥墩横向温度梯度会对无缝线路轨向平顺性影响较大;纵向温度梯度对线路平顺性影响不大。  相似文献   

13.
车桥系统空间非平稳随机分析   总被引:1,自引:0,他引:1  
采用虚拟激励法将轨道高低、方向和左右轨高差不平顺转化为一系列简谐荷载,将非平稳振动分析转化为确定性的时间历程分析,进行三维车桥系统空间非平稳随机分析。采用分离迭代法求解车桥系统运动方程,运用三倍差原理确定系统响应的最大和最小值,讨论系统响应的功率谱密度。研究表明:车体振动、桥梁跨中横向响应和轮对受到的横向轮轨力的随机性较大,轨道不平顺是其主要影响因素,桥梁跨中垂向响应及轮对受到的垂向轮轨力主要由确定性荷载引起。  相似文献   

14.
高速铁路轨道不平顺幅值控制研究   总被引:2,自引:0,他引:2  
研究目的:快速、舒适和安全是高速铁路得以实现的三大要素.由于高速铁路列车与轨道的相互作用很复杂,轨道几何形位难控制,从而造成轨道与设计线形的变化,出现轨道几何不平顺,反过来又会影响列车行驶的安全和舒适度.本文通过建立列车垂向振动整车模型,考虑轨道结构的弹性,以轨道不平顺值作为激励,建立运动方程.用变换矩阵法求解系统的刚度、阻尼、质量矩阵,以Newmark积分法经matlab编程逐步求解.提出车体垂向加速度和轨道高低不平顺幅值.研究结论:通过建立整车模型和对运动方程的求解,探讨了轨道高低不平顺对列车垂向加速度的影响;通过与国内外相关标准的比较,提出在时速300 km/h时应满足的轨道最大高低不平顺幅值,即:当车体垂向加速度满足不平顺舒适度值0.15 g时,轨道高低不平顺幅值应控制在8 mm以内;满足计划维修目标值0.25 g时,轨道高低不平顺幅值应控制在14 mm以内;满足安全管理目标值0.35 g时,轨道高低不平顺幅值应控制在19 mm以内.  相似文献   

15.
武广(武汉—广州)高速铁路运营多年,轨道几何波形及幅值发生较大变化,影响列车高速运行的安全性和舒适性。针对这一问题,本文基于武广高速铁路轨道几何动态检测历史数据,采用谱分析方法对轨道几何幅频特性进行分析,研究了轨道几何周期性特征及幅频演变规律。结果表明:武广高速铁路高低存在简支梁徐变上拱变形引起的波长32 m周期不平顺,轨向存在钢轨焊接不良引起的波长100 m周期不平顺;隧道内轨道平顺状态优于路基和桥梁区段;直线和曲线区段的轨道平顺状态没有明显差异;高低谱随时间呈增大趋势;开通运营5年后桥梁徐变上拱发展速率变慢;轨向谱幅频随时间无显著变化;轨道精调能显著改善轨道平顺状态。  相似文献   

16.
为调查嵌入式轨道的槽型轨焊接不平顺的安全控制限值及焊接不平顺现代对有轨电车及嵌入式轨道动力作用的影响,建立现代有轨电车/嵌入式轨道耦合动力学模型。计算模型中,现代有轨电车简化为多刚体动力系统,嵌入式槽型轨被视为连续弹性支承基础上的Timoshenko梁,整体道床用三维实体有限元单元模拟,钢轨填充材料用三维粘弹性弹簧-阻尼单元模拟,嵌入式道床板底部的致密混凝土底座及路基简化为等效的弹簧-阻尼单元。基于动力学仿真计算,以GB5599-1985规定的车辆动力学性能指标为评定准则,对槽型轨焊接不平顺的安全限值进行详细分析。计算结果表明,对于短波波长小于0.2 m的焊接不平顺,1 m范围内槽型轨轨顶面容差的建议控制限值为0.2 mm;对于短波波长大于0.2 m的焊接不平顺,1 m范围内槽型轨轨顶面容差的建议控制限值为0.3 mm。  相似文献   

17.
房建  雷晓燕  练松良  刘林芽 《铁道工程学报》2011,(5):45-46,48,50,85
研究目的:本文旨在通过现场实测和仿真计算研究曲线轨道不平顺对车辆动力特性的影响。首先,利用轨检车实测数据对我国提速线路轨道不平顺与车辆振动加速度之间的关系等进行了统计分析及相关分析,对武九线曲线段的轨道谱也进行了初步估计。其次,采用动力学仿真软件Adams/Rail建立车辆-轨道动力学模型,并以实测数据作为验证手段,分析了轨道不平顺类型、幅值和波长对车辆运行平稳性和安全性的影响,提出了对行车运行有不利影响的不平顺波长范围。研究结论:高低不平顺对列车垂向振动影响显著,轨向不平顺对列车垂向、横向振动均有显著影响,当列车以110 km/h运行时,为了避免列车在不平顺激励下产生共振,应该对2.5 m、3.72 m、20 m和28 m波长的轨道不平顺进行控制。  相似文献   

18.
基于车辆-轨道耦合动力学理论,结合我国高速铁路轨道不平顺的管理模式,提出利用高速铁路轨道不平顺谱进行不同管理等级轨道不平顺限值估算的方法。以中国高速铁路无砟轨道不平顺谱激扰作用下中国典型高速车辆在板式无砟轨道上运行为例,进行350km/h行车速度条件下轨道高低、轨向、水平、轨距不平顺各管理等级(Ⅰ~Ⅳ级)对应限值的估算,并与传统单一谐波(波长为10、40m)激扰作用下计算获得的限值和国内外高速铁路轨道不平顺标准对比分析。结果表明,采用本文所提的限值估算方法,以包含多种波长成分的随机不平顺作为输入激扰,相比单一谐波的计算方式考虑更为全面,可反映轨道不平顺各波长成分对行车品质的共同作用;相比国内外高速铁路轨道不平顺标准,在本文仿真计算条件下,利用高速铁路轨道不平顺谱估算的各管理等级轨道不平顺限值总体居于国内外标准之间。因此,本文利用高速铁路轨道不平顺谱进行轨道不平顺限值估算的方法是可行的,为采用动力学仿真手段获取轨道不平顺理论限值提供了一种新途径。  相似文献   

19.
针对轨面不平顺对高架支承块轨道结构振动特性的影响进行现场试验,分别从时域和频域对比分析不同轨面不平顺状态下轨道结构的振动响应,重点考虑10~1 000 Hz频率范围内的振动.分析结果表明:轮轨冲击力和轨道结构振动加速度幅值随轨面不平顺幅值的增加而增大,同时也受到轨面不平顺类型和波长分布的影响;轨面不平顺引起的钢轨振动频率主要分布在50~1 000 Hz的范围内,承轨台、桥面板垂向振动频率分布在40~200 Hz的范围内,轨面不平顺的波长分布是影响轨道结构振动频率分布特性的主要因素之一;降低谐波型轨面不平顺幅值0.2mm,可以减小钢轨垂向振动水平14.1dB.建议将轨面不平顺谱加入轨道质量的评价指标中.  相似文献   

20.
运用Midas软件分别建立简支梁桥-CRTSⅡ型板式无砟轨道空间耦合静力学模型和车-线-桥耦合动力学模型,进行32m高速铁路简支梁桥铺轨后残余徐变上拱限值研究。结果表明:桥梁残余徐变变形是影响32m波长周期性高低不平顺的主要因素;随着桥梁残余徐变幅值增加,长钢轨的附加不平顺呈线性增大,桥梁残余变形幅值为10mm时,钢轨的上拱变形量可达9.8mm;行车速度为380km·h^-1、桥梁残余徐变上拱幅值由3mm增加至10mm时,车体的垂向加速度峰值由0.275m·s^-2增加至1.159m·s^-2,旅客乘坐舒适度指标由1.549逐渐增加至3.105;当桥梁残余徐变幅值为8.0mm,在280~380km·h-1车速范围内,旅客乘坐舒适度指标达到3.108,桥梁梁端振动加速度达到5.217m·s^-2,已超出规范限值,因此建议高速铁路32m简支梁桥铺轨后其残余徐变上拱限值按7.0mm控制,为避免残余徐变限值的改变对桥梁设计方案产生显著影响,可通过适当延后铺轨时间保证桥梁残余徐变变形满足限值要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号