首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
经柏林  谢华鸾 《公路》2004,(6):82-84
通过理论计算对由温差引起的1号主梁横隔板裂缝进行了分析,同时也分析了裂缝产生的其他原因,并提出控制裂缝的几点措施。  相似文献   

2.
针对某斜拉桥钢箱梁纵向U肋与横隔板槽口两边间隙不一的问题,根据U肋槽口间隙焊缝间隙的大小制订3种处治方案;考虑到槽口改变对近处轮载应力影响较大,利用ABAQUS建立空间实体有限元模型,分析了在轮载效应下3种处治方案的弧形切口位置处及横隔板切割处的应力分布状况。结果表明,按处治方案进行槽口整改,对整改区域附近横隔板轮载应力的影响稍大,且使主拉应力有所减少(减少约10%),对稍远处轮载应力的影响较小(小于1%),对疲劳寿命的影响可忽略不计;横隔板整改切割线处的应力水平较低(小于10 MPa),且垂直于切割线方向的正应力大部分为压应力,该处焊缝的疲劳强度满足规范要求。  相似文献   

3.
以某长江公路大桥为例,对桥梁运营阶段正交异性板钢箱梁裂缝病害成因进行分析,通过对交通量和车辆轴载分析,以及钢箱梁疲劳开裂有限元计算,提出综合处治方案,并进行结构理论计算。通过对试验段应变监测实测数据分析,进一步优化加固方案。  相似文献   

4.
姜宏维  郭建明 《公路》2024,(3):104-110
在大跨度钢箱梁悬索桥建设发展初期,设计和施工理念的不完善,造成在部分悬索桥运营过程中钢箱梁发生开裂现象,影响桥梁的安全运营。以某座主跨为1 108 m的单跨钢箱梁悬索桥为例,采用有限元软件ANSYS板壳单元建立该桥节段静力分析模型,得到开裂位置精细化受力分析结果,明确了钢箱梁开裂原因。在此基础上,提出了3种加固措施,并对3种措施进行了方案组合,结果表明,当3种措施同时作用于钢箱梁上时,可以有效地减小开裂处的应力,从而达到加固处治效果。  相似文献   

5.
某跨江大桥为主跨460m的斜拉桥,运营多年后正交异性板钢箱梁出现大量裂纹,提出采用超高性能混凝土(UHPC)组合桥面(由配钢筋网的UHPC层与钢桥面板通过短栓钉组合而成)进行改造。为选择合适的改造方案,采用有限元法建立原钢箱梁和UHPC组合桥面钢箱梁(UHPC层厚4.5,5.5,6.0cm)模型,分析各疲劳细节应力及UHPC层应力;开展UHPC层配置钢板条的组合结构模型试验,验证其疲劳性能。结果表明:UHPC组合桥面降低了钢箱梁各疲劳细节最大应力幅,降幅为11%~88%,顶板疲劳细节处裂纹尖端最大应力幅降幅达92%;疲劳荷载作用下,UHPC层顶面应力较低,钢桥面板开裂后UHPC层底面应力较大;采用钢板条对5.5cm厚UHPC层的组合结构加强后,UHPC层名义开裂应力达43.2MPa,200万次疲劳寿命达22.1MPa,疲劳性能满足要求,选择该方案进行改造。  相似文献   

6.
针对压-压循环可不验算疲劳、横隔板弧形切口母材疲劳为面外反复变形所致、《公路钢结构桥梁设计规范》(JTG D64—2015)(以下简称《公路钢桥规》)疲劳损伤效应系数取值等认知或规定,以及服役背景工程横隔板弧形切口处补强细节尺寸的确定,通过服役背景工程的疲劳细节、交通载荷与病害特征等信息汇集,服役背景工程多种补强方案、新建背景工程等轮载有限元分析与多规范疲劳验算比较,力求揭示横隔板弧形切口母材疲劳开裂机理,确定其合理的补强细节。研究结果表明:横隔板弧形切口处母材的轮载应力主要为膜压应力,轮载压应力幅耗费横隔板母材疲劳寿命;《公路钢桥规》疲劳损伤效应系数取值或许偏大;弧形切口形状对横隔板与U肋连接处及横隔板母材轮载应力及其峰值影响较大,弧形切口半径不能太小,且其与U肋交点的切线与U肋腹板的夹角宜取小值;横隔板母材裂纹较短者(优化后,裂纹自然切除)可采用弧形切口优化的处治方案,较长者可采用止裂孔+弧形切口优化+双面补强钢板的处治方案;补强钢板对补强以外稍远部位应力影响可忽略,补强钢板尺寸可统一,其边缘距顶板可取65mm,已覆盖裂纹全长,其边缘距U肋宜取30mm,太近会导致横隔板与U肋连接焊缝处应力增大,其厚度宜取4mm,过厚将在补强钢板边缘处母材上形成新的疲劳敏感点。  相似文献   

7.
宽幅钢箱梁横向受力较大的特征使得横隔板与U肋过焊孔周边细节构造容易出现疲劳破坏。为提高该细节构造的疲劳性能,以沌口长江公路大桥为背景,针对横隔板U肋过焊孔的常用形式,采用ANSYS软件建立钢箱梁节段的有限元模型,通过仿真分析比较不同形式过焊孔的结构强度及疲劳性能,结合其局部受力机理及参数化分析,提出改进的过焊孔形状和加厚横隔板顶部齿形板的优化措施,并利用损伤度原理验证改进效果。结果表明:提出的横隔板与U肋过焊孔改进形式明显改善了该细节构造的疲劳性能;加厚横隔板顶部的齿形板,可明显降低过焊孔的疲劳应力幅,提高其疲劳寿命。  相似文献   

8.
为研究钢箱梁正交异性桥面板横隔板与U肋交接处的残余应力分布规律,采用Abaqus有限元软件模拟横隔板的热切割和焊接过程,分析横隔板与U肋交接处热残余应力的分布特征,探讨切割速度和焊接速度对横隔板弧形切口处残余应力的影响。结果表明:横隔板弧形切口处产生切向残余拉应力,其值超过钢材屈服强度;焊接在横隔板与U肋焊接区局部范围引起沿焊缝方向的残余拉应力,且焊缝尾端的应力集中更为明显;弧形切口残余应力区宽度随切割速度的增加而减小,残余拉应力随焊接速度的增加而增大;选用较快的横隔板切割速度和较慢的焊接速度可减小弧形切口处残余应力分布宽度和应力值。  相似文献   

9.
为评估正交异性钢桥面板的疲劳寿命,给维修和设计提供参考,以某连续钢箱梁桥(设置高1.8 m的横隔板与净高0.9 m的横肋)为背景进行研究.采用ANSYS子模型技术建立了钢箱梁节段模型,基于热点应力法对横隔板与横肋弧形切口起始处和弧形切口自由边两处疲劳细节进行了寿命预测,并就两处细节疲劳性能对弧形切口型式和板厚变化的敏感...  相似文献   

10.
横隔板弧形切口处疲劳开裂是钢箱梁的主要疲劳病害之一,为提高该细节的疲劳性能,确定其合理构造形式,以某悬索桥(加劲梁采用钢箱梁)为背景,建立钢箱梁节段有限元模型进行疲劳应力分析,基于P-M线性积伤律和Eurocode 3提供的S~N曲线计算其疲劳寿命,比较6种国内外常用弧形切口的疲劳性能,并分析切口半径和横隔板厚度对疲劳应力的影响。结果表明:轮载作用下横隔板弧形切口处存在明显的拉、压应力集中区;疲劳裂纹萌生于压应力集中区,裂纹扩展方向与主压应力方向基本垂直;弧形切口的形式显著影响其疲劳性能,国内外典型孔型中,圆弧+直线方案(孔型4)为刚性横隔板弧形切口的最佳孔型;适当增加孔型4的切口半径和横隔板厚度有利于提高其疲劳寿命,增加切口半径较增加板厚效果更好。  相似文献   

11.
周昌 《华东公路》2014,(3):72-73
通过借助有限元软件对T梁桥进行力学性能分析。总结出纵向不同位置增设横隔梁时,T梁桥的横隔梁及主梁应力的变化趋势。  相似文献   

12.
以1座全钢结构的独塔斜拉桥为项目背景,通过建立全桥的Midas有限元模型,分析其整体的受力性能,并以此为基础验算钢箱梁顶底板的受压板稳定、腹板的局部稳定等;最后利用Ansys有限元模型,分析了钢桥面正交异性板的局部受力性能。通过这个完整的验算流程,可以保证钢箱梁结构的运营安全。  相似文献   

13.
随着正交异性钢桥面板梁结构的普及应用,该结构形式相关的病害案例不断出现,常有铺装损坏、板件裂纹、构件断裂等。结合某跨江桥梁横隔板裂纹处治案例,分析了正交异性钢桥面板在车辆超载情况下出现疲劳的合理性;闭口加劲肋过焊孔疲劳细节对横隔板疲劳性能影响较大,例桥中加劲肋过焊孔形式与当前经常采用细节优劣。横隔板厚度及横隔板连续性对横隔板疲劳性能的影响。得出闭口加劲肋顶缘过焊孔堆焊封起有利于构件疲劳性能,闭口加劲肋弧形缺口形状及尺寸大小会影响构件疲劳性能等。  相似文献   

14.
钢结构的稳定问题是钢结构的最重要问题之一,而横隔板又是钢箱结构保持稳定的重要构件。针对某系杆拱桥拱肋顶箱梁尺寸过小,横隔板无法设置人孔的状况,提出了一种钢箱横隔板的特殊设计方法,解决了该桥钢拱肋横隔板的设置问题。所述方法可为其他工程中类似构造问题提供了一定的参考价值。  相似文献   

15.
以南京长江第二大桥南汊桥为例,分析了在斜拉桥流线形扁平钢箱梁中设置纵隔板对箱梁有效宽度、起吊阶段相对变形的改善。  相似文献   

16.
以南京长江第二大桥南汊桥为例,分析了在斜拉桥流线形扁平钢箱梁中设置纵隔板对箱梁有效宽度、起吊阶段相对变形的改善.  相似文献   

17.
钢箱梁是斜拉桥及悬索桥的主要承重构件,随着交通流量的不断增加,钢箱梁在运营过程中U肋、横隔板和各构件连接焊缝处会出现疲劳裂缝的现象越来越多,从而影响桥梁的运营安全和使用寿命。本文以某跨江公路大桥为例,通过分析各构件的受力状态,对该桥钢箱梁出现裂缝的成因进行分析,并提出相应的维修处置建议,以期对类似大型桥梁钢箱梁裂缝病害维修起到借鉴作用  相似文献   

18.
针对某混凝土斜拉桥出现底板开裂现象,提出了采用预应力拉杆加固的设计方案;该方案不同于常规的桥梁加固,且施工便捷。  相似文献   

19.
某斜拉桥的病害成因及加固研究   总被引:3,自引:0,他引:3  
以某斜拉桥为研究对象,针对该桥纵梁局部开裂的现象,通过索力测量,并用大型通用有限元计算软件对其进行模拟与分析,得出该桥在施工过程中对斜拉索张拉力的配置不合理,从而改变了原有结构的受力状态,引起桥梁的内力重分配,使桥梁的安全受到影响。通过采用碳纤维布加固技术使该桥恢复了原桥的交通功能。  相似文献   

20.
斜拉桥扁平钢箱梁是空间复杂受力的结构体系,是设计的关键部位。文章利用六自由度的梁单元和壳单元模拟斜拉桥中不同位置扁平钢箱梁,形成混合有限元。利用该方法对某钢箱梁斜拉桥进行整体受力计算,得到钢箱梁各板件的应力,分析了钢箱梁顶板应力在横桥向的不均匀性,并与常见的板壳有限元节段模型计算结果进行比较,验证了该方法的实用性与可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号