首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
109国道黑马河至伊克高里段沥青面层混合料配合比设计   总被引:1,自引:0,他引:1  
沥青改性剂对改善沥青性能,提高沥青路面的强度和稳定性有着良好的作用.通过109国道黑马河至伊克高里段改性沥青混合料配合比设计,分析了青海高寒地区改性沥青的应用性能.  相似文献   

2.
文章针对寒冷地区气侯的特殊性,运用沥青混合料弯曲试验方法,分析了温度、公称最大粒径、油石比、沥青种类等因素对寒冷地区沥青混合料弯拉特性的影响及作用规律。研究结果表明:混合料油石比在6.0%~7.0%范围内取值较适宜;SBR改性沥青混合料低温性能优势显著;多年冻土地区路面设计应该重视-10℃下沥青混合料的弯曲特性,提高沥青混合料的低温性能。  相似文献   

3.
为了深入揭示沥青混合料高温稳定性,采用汉堡车辙试验研究了不同试验条件和不同类型沥青混合料的车辙变化规律及其影响因素。结果表明,随着温度的升高,沥青混合料高温抗车辙性能逐渐降低;水的存在导致沥青混合料高温稳定性降低;改性沥青能够有效提高沥青混合料的高温稳定性能;SAC—16沥青混合料的抗车辙性能大于AC—16沥青混合料;随着公称粒径的增大,沥青混合料的抗车辙能力随之提高。  相似文献   

4.
青南地区沥青路面施工需综合考虑低温高寒、雨热同期等高寒地区特殊的环境因素。文章结合G214线结古至巴塘机场公路建设,从沥青混合料配合比设计入手,探讨高寒地区沥青混合料配合比设计方法。  相似文献   

5.
在沥青混合料性能评价以及已有的抗车辙沥青路面技术研究成果的基础上,以沥青混合料的技术要求、结构组合、厚度设计为主要研究内容,以提高沥青路面抗车辙能力、水稳定性和低温抗裂性等综合性能为目的,针对贵州地区的特点,提出了山区高速公路抗车辙沥青路面典型结构设计,并推荐了适合贵州地区的sAc级配范围。  相似文献   

6.
为分析纳米ZnO材料在改性沥青方面的应用效果,验证其沥青混合料的综合路用性能,文章通过制定相应的纳米ZnO改性沥青、纳米复合ZnO/SBS改性沥青的试验方案,利用车辙试验、SPT简单剪切试验、小梁弯曲试验和冻融劈裂试验等分析四种不同类型沥青混合料的路用性能。结果显示:纳米ZnO材料显著改善了70~#基质沥青的高温抗车辙性能、低温抗裂性能和水稳定性能,其中采用复合ZnO/SBS改性的沥青混合料综合路用性能最佳,远超出规范要求标准;纳米复合ZnO改性沥青混合料与70~#基质沥青相比动稳定度和动态模量值分别提高了约114.1%和233%,最大破坏弯曲应变和残留稳定度分别提高了35.7%和14.5%。汇总可知,采用纳米ZnO改性方法能够有效解决目前沥青路面所面临的早期病害问题,为沥青混合料改性技术的应用提供技术支持,对延长路面使用寿命具有重要意义。  相似文献   

7.
文章针对多聚磷酸(PPA)对沥青材料低温断裂性能的影响进行研究,并深入揭示PPA与沥青分子的相互作用。将不同掺量(0、0.5%、1.0%、1.5%)的PPA添加到基质沥青中,制备了不同掺量的PPA改性沥青,分别基于弯曲梁流变仪(BBR)试验和半圆弯曲(SCB)试验来评价PPA对沥青及其混合料的低温抗裂性。结果表明:当PPA掺量从0.5%增加到1.5%时,沥青的低温临界开裂温度增加,这说明过量的PPA对沥青的低温抗裂性能有负面影响。而沥青混合料试件的断裂能、裂缝扩展速率和SCB开裂指数显示,PPA能改善沥青混合料裂纹扩展过程中的延滞行为,1.0%的PPA可明显改善沥青混合料的低温抗裂性能,过量的PPA则会提高其低温断裂的可能性。  相似文献   

8.
温拌沥青混合料的性能非常接近于热拌沥青混合料,在低碳交通的新理念下,温拌沥青混合料体现了它低排放、低污染的优点,本文基于两种温拌添加剂(固、液各一种),采用空隙率等效和压实特性对其降温效果进行了评价,并对设计的沥青混合料路用性能进行了试验研究。结果表明,两种温拌材料具有不同程度的降温效果,对混合料性能也有一定影响。相关研究方法可为温拌沥青混合料的设计提供借鉴。采用两种温拌剂进行了现场实施,应用结果表明,固体类温拌剂更适合高寒地区沥青路面工程特点,并提出了相应的最低施工温度。  相似文献   

9.
为提高广西湿热地区沥青混合料的抗车辙性能,文章根据矿质混合料的级配理论,针对粗集料颗粒的体积特征,提出一种均匀骨架密实抗车辙型沥青混合料组成设计,并采用粗集料间隙率VCA法评价该沥青混合料的骨架特征,同时对沥青混合料的体积参数等进行了研究.结果表明:(13.2~26.5)mm的粗集料用量相对较多,有利于粗集料之间形成防离析、均匀的骨架嵌挤密实结构.  相似文献   

10.
文章针对盐冻融循环条件的特点,选择木质素纤维、聚酯纤维两种纤维、硅藻土、抗车辙剂、岩沥青、胶粉六种添加剂,通过在7%的盐溶液中冻融循环15次以模拟北方寒冷地区融雪盐对路面的损害,然后对六种沥青混合料分别进行贯入剪切试验、小梁弯曲试验以及弯曲疲劳试验,研究不同添加剂对沥青混合料技术性能的影响,为改善盐冻融地区沥青路面的性能提供参考。  相似文献   

11.
文章通过沥青混合料配合比设计拟定了SMA-13和AC-13两种沥青混合料,并采用不同组合进行了双层结构的设计性车辙试验研究。结果表明:双层结构车辙板比单层车辙板更贴切实际路面受力情况,且上面层的抗车辙性能对双层结构车辙板的动稳定度有较大影响;即上面层的动稳定度提高86.6%时,复合车辙板的动稳定度可以提高61.7%左右;而下面层的动稳定度与复合车辙板的整体抗车辙性能并无明显关联,该试验结果可为实际路面的设计和铺筑提供指导和借鉴作用。  相似文献   

12.
沥青混凝土路面在夏季高温季节,随着交通量的日渐增加,轴载增加、车辆大型化超载严重以及车辆渠道化共同作用下很容易产生车辙开裂等病害。采用抗车辙剂掺量为混合料重量的0.2%~0.8%.能够显著提高沥青混合料的高温稳定性,抗车辙剂是一种综合性提高和改善沥青混合料的路用性能的新型外加剂。  相似文献   

13.
文章以基质沥青和调和沥青作为对照组,通过室内路用性能试验对PPA改性生物沥青的高温、低温和抗水损害性进行研究.试验结果表明,生物沥青自身优异的抗高温性能能够增强基质沥青混合料的高温稳定性,但会降低其低温性能和水稳定性;PPA改性剂能够明显提高生物沥青混合料的高温抗车辙变性能和低温抗开裂能力,但同时也会削弱其抗水损害性能...  相似文献   

14.
文章采用马歇尔法,确定了沥青混合料AC-13的最佳油石比,并评价分析了石灰岩机制砂、辉绿岩机制砂及其规格对抗滑表层沥青混合料AC-13的组成及性能的影响。结果表明:石灰岩机制砂沥青混合料AC-13的2.36mm、0.6mm、0.075mm的通过率分别为23.1%、13.7%、6.7%时,最佳油石比为4.6%;辉绿岩机制砂沥青混合料AC-13的2.36mm、0.6mm、0.075mm的通过率分别为27.7%、14.9%、7.0%时,最佳油石比为4.9%;相对辉绿岩机制砂沥青混合料AC-13,石灰岩机制砂沥青混合料AC-13的动稳定度、冻融劈裂抗拉强度比、粘聚力分别提高了13.3%、21.2%、3.4%;相同辉绿岩粗集料条件下,石灰岩机制砂沥青混合料AC-13的抗剪强度、抗滑性能相对更优。  相似文献   

15.
文章利用GTM试验方法对不同布敦岩沥青掺量(布敦岩沥青中的沥青质量与基质沥青质量之比分别为0%、10%、15%、20%、25%)的布敦岩改性沥青混合料进行了配合比设计,并分别对该沥青混合料的高温抗车辙能力、抗水损害能力以及低温抗裂能力进行了试验研究。试验结果表明:布敦岩沥青混合料具有良好的路用性能。  相似文献   

16.
文章结合室内试验,探讨了添加RA抗车辙剂的沥青混合料的最佳用油量,并详细分析了不同RA抗车辙剂掺量下的沥青混合料的高温、低温以及水稳定性性能。研究表明,RA抗车辙剂能够有效提高沥青混合料的路用性能。  相似文献   

17.
为改善冷补沥青混合料水稳定性能,文章探讨了在道路养护工程中冷补沥青混合料相对于普通沥青混合料的优势,分析了适合冷补沥青混合料的水稳定性评价方法,研究了添加剂对冷补沥青混合料水稳定性的影响。结果表明:抗剥落剂、增粘剂的掺入可有效提升冷补沥青混合料水稳定性,且对提高混合料稳定度有一定作用。  相似文献   

18.
文章对SBS掺量为6%的改性沥青混合料AC-16和基质沥青混合料进行马歇尔稳定度试验和车辙试验对比,分析沥青混合料的高温抗车辙性能。结果表明:随着温度升高,沥青混合料的稳定度下降,但SBS改性沥青混合料稳定度的降低速度低于基质沥青混合料;在沥青混合料试样DS动稳定度不断增加时,RD车辙深度和车辙变形的时间累计A表现为不断缩小,SBS改性沥青混合料AC-16的高温性能更适于广西高温潮湿多雨的气候特点。  相似文献   

19.
提高沥青混合料水稳定性简单而有效的措施是在沥青混合料中掺加具有抗剥落效果的添加剂.在国外较多的是把消石灰作为抗剥落添加剂掺入沥青混合料中,国内对外掺剂改善沥青混合料抗剥落性能的影响虽有一些研究,但各研究者有不同的看法,仍需进一步进行探讨.本文采用福建省高速公路面层应用的级配AC-13C作为研究级配,对固体抗剥落剂、消石...  相似文献   

20.
本文在沥青混合料高温稳定性试验方法研究的基础上,选用典型的三种骨架结构的级配进行对比分析,研究了不同级配类型沥青混合料掺加RP2000抗车辙剂后高温性能变化规律。同时对RP2000与不同种类的抗车辙剂沥青混合料、基质沥青混合料和SBS改性沥青混合料的高温性能进行对比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号