首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为分析在地震荷载作用下路堤的动力响应,以潼西改扩建工程为依托,运用MIDAS/GTS有限元程序建立潼西高速公路改扩建工程数值计算分析模型,分析了公路路面的水平和竖向位移响应和路堤边坡面动力响应。结果表明:在地震荷载作用下,距旧路中心距离越近,最大水平和竖向位移越小;新旧路基结合部产生明显的相对水平位移,路面发生断裂破坏的概率最大;同一地震荷载作用下,不同高程路堤的加速度的放大系数并不相同,随着高程的增加,放大系数整体上逐渐变大;当路堤坡顶观测点出现水平位移峰值时,坡面其它各观测点同样出现水平位移峰值,坡顶观测点的水平位移和加速度峰值并不同步,水平位移峰值滞后于加速度峰值。  相似文献   

2.
为了研究包盖法填筑炭质泥岩路堤在降雨条件下的稳定性,基于饱和-非饱和渗流数学模型与边坡稳定性计算理论,对不同降雨强度和饱和渗透系数影响下炭质泥岩路堤渗流特性及稳定性的变化规律进行了分析。得出如下结论:(1)降雨过程中,坡面附近土体体积含水率升高速度快,其升高幅度和高程、距坡面的距离成反比。降雨停止后,坡面附近土体体积含水率降低缓慢,其降低幅度和高程、距坡面距离成正比。(2)随着降雨时间的增加,降雨强度越大,路堤土体孔隙水压力升高越明显,包边土体中正孔隙水压力区域范围也越大。(3)在降雨过程中,路堤饱和渗透系数越大,路堤土体孔隙水压力升高幅度越小。包边土体中正孔隙水压力区域范围也越小。(4)降雨期间,路堤安全系数逐渐降低;降雨停止之后,路堤安全系数缓慢升高。路堤安全系数的大小和降雨强度、饱和渗透系数成反比。  相似文献   

3.
针对炭质泥岩遇水易软化、破碎及崩解的特点,以广西六寨-河池高速公路沿线的炭质泥岩为例,开展荷载及干湿循环共同作用下炭质泥岩崩解特征试验,并采用扫描电镜、X线衍射等方法系统研究炭质泥岩崩解过程中颗粒的形态、质量、粒径分布特征,进而探讨炭质泥岩崩解机理。试验结果表明:随着干湿循环次数的增加,炭质泥岩崩解宏观上表现为大粒径崩解物逐渐消失,小粒径崩解物的含量逐渐增大,微观上表现为黏粒逐渐脱落并流失,片状结构逐渐转化为细长针状结构,同时孔隙不断扩大,直至贯通;炭质泥岩第1次干湿循环过程崩解最为强烈,5次干湿循环后崩解趋于稳定,试样的不均匀系数及曲率系数均随循环次数的增加呈先上升随后逐渐稳定的趋势,相同循环次数下,荷载越大,不均匀系数及曲率系数越大;炭质泥岩崩解程度高,最终崩解率均大于30%,荷载越大,最终稳定时的崩解比越低,分别为50.68%、50.07%、41.09%及35.95%;炭质泥岩崩解具有分形特征,分形维数在前5次干湿循环过程中不断增长,之后逐渐趋于稳定,干湿循环次数相同时,分形维数随荷载的增加而增大。研究成果可为炭质泥岩路堤稳定性分析及工程实践提供参考。  相似文献   

4.
《中外公路》2021,41(4):357-362
为研究预崩解炭质泥岩抗剪强度、渗透系数与竖向荷载及干湿循环的关系,研发一套可施加竖向荷载的岩土干湿循环试验装置,分别利用直剪仪、渗透仪开展预崩解炭质泥岩干湿循环后抗剪强度及渗透试验研究。结果表明:预崩解炭质泥岩的抗剪强度与法向应力呈正相关关系,随竖向荷载、循环时间的增加而增大,随循环次数的增加而降低,且抗剪强度的变化主要是由于颗粒间黏聚力的变化。渗透系数与竖向荷载及干湿循环时间呈负相关关系,而随循环次数的增加呈正相关关系,拟合预崩解炭质泥岩抗剪强度与渗透系数的幂函数关系模型,可为预崩解炭质泥岩抗剪强度、渗透特性及路堤稳定性研究提供理论依据。  相似文献   

5.
为探索高速公路交通荷载与降雨环境耦合作用下低路堤复杂的动力特性及长期性能保障技术措施,依托浙江省某低路堤高速公路为工程背景,结合现场埋深元件测试获取动应力、加速度、动位移等数据,分析了不同轴重和车速等条件下路基的动力特性差异,具体包括动力指标量值和竖向影响深度;考虑降雨环境对高速公路服役期路基动力特性影响,借助ABAQUS有限元分析软件建立"降雨环境-交通荷载-路基"三维数值模型,分析了降雨强度对路基服役期动力特性影响,具体包括中雨(1.25 mm/h)、大雨(2.5 mm/h)和大暴雨(10 mm/h)3类工况;考虑平原水网区低路堤高速公路受交通荷载和降雨环境长期耦合作用,结合路基填料设计、排水系统优化等角度,探讨了保障低路堤路基长期动力稳定性能的技术措施。结果表明:不同荷载条件下路基动应力、加速度和动位移存在差异,但沿路基深度均呈衰减趋势;动应力幅值与轴重成正相关,轴重20 t车辆的动应力幅值约为50 k Pa,约为轴重5 t车辆的动应力幅值的7~10倍;相对轴重10 t车辆荷载条件下,速度对动位移影响更大,轴重20 t车辆荷载条件对应动位移约0.60~1.02 mm;相比干燥路基状态,中雨、大雨和大暴雨降雨强度下路基动应力值提高约为3%~15%;合理路基填料设计可以提高低路堤刚度和强度,而完善的排水系统可降低交通荷载与降雨叠加引起的动力响应程度,均可在一定程度达到保障低路堤长期动力稳定的目的。  相似文献   

6.
建立移动简谐荷载作用下三维路堤与换填地基动力响应模型,对超载、软土地基换填及行车速度等因素影响下的风积沙低路堤与地基动力响应展开研究。结果表明:①超载20%时,路基动力响应影响深度为6.9 m,远大于标准轴载下的1.9 m,超载对路基路面造成了较大的破坏;②对盐渍化软土地基采用砂砾换填处治后,改善了上部路基的变形特性;③不同车速工况下,动荷载的作用时间与幅值是动力响应的主要影响因素;高速行驶的车辆对路基动力响应的影响比低速要大得多。  相似文献   

7.
刘勇  晏万里  殷新锋 《公路与汽运》2022,(1):139-141,154
为精确分析大跨悬索桥在重型车辆作用下的振动响应,基于LS-DYNA程序,根据实际重型车辆结构特性建立精细的三维车辆模型,将车辆子系统和桥梁子系统进行耦合,建立实体单元的车桥耦合振动模型;设置多种荷载工况,对比分析主梁各特征点位置的竖向位移、吊杆和主梁顶板的动力响应.  相似文献   

8.
姚玉相  李盛  马莉  王焕  王长丹 《隧道建设》2019,39(9):1461-1470
为研究高填黄土明洞加筋减载的荷载传递规律,采用颗粒流软件模拟高填黄土明洞加筋减载,通过分析洞顶竖向应力、颗粒竖向位移、颗粒间的接触力、格栅的竖向变形和孔隙率等细观参数的变化,从微观角度揭示土工格栅加筋减载明洞减载规律,并进一步研究土工格栅刚度和层数对洞顶减载效果的影响。结果表明: 1)土工格栅的竖向变形和颗粒竖向位移变化形式基本保持一致,格栅的变形依赖于洞顶内外土柱的沉降差; 2)在格栅所能承受的最大变形范围内,内外土柱负的沉降差越大,格栅的拉膜效应越显著,减载效果越好; 3)格栅的刚度和层数对其减载效果均有一定的影响,应根据实际填土高度和填土性质选择适宜刚度和层数的格栅进行减载。  相似文献   

9.
强风环境下斜拉桥车桥系统动力响应分析研究   总被引:2,自引:2,他引:0  
基于模态综合分析理论,在推导复杂车辆模型刚度、阻尼矩阵和建立车桥系统风荷载模型的基础上,提出一种全面考虑动力风载效应的车桥系统动力响应分析方法,结合桥例对强风环境下的斜拉桥车桥系统的动力响应进行了分析研究。结果表明:强风下桥梁竖向位移响应受风载影响显著,横向位移响应主要由风荷载控制;低风速下桥梁的振动加速度响应受风荷载影响较大;风荷载引发的桥梁振动对车辆竖向位移和加速度响应影响较大,横向响应由风载和桥梁响应控制,风载对车桥系统动力响应影响明显。所提出的方法具有较高的精度和分析效率,可为其他类型大跨桥梁的相关分析提供参考。  相似文献   

10.
采用等效加载车辆法对连续刚构桥进行静载试验。结果表明:各工况下,所测得的结构各控制截面的主要测点位移、控制应变的结构校验系数均小于1.05,强度和竖向刚度均满足设计和使用要求;各工况下,全部荷载卸除后,残余变形与量测的总变形的比值小于20%,结构处于弹性工作状态。  相似文献   

11.
基于正弦函数变化的路面不平度和两自由度的四分之一车辆模型,推导出车辆随机动荷载计算公式,研究路面不平度对车辆荷载作用下低路堤动力响应的影响规律。建立车-路耦合三维动力有限元模型,计算分析6种工况下不同路面不平度时车辆随机动荷载作用下低路堤的动应力,得出低路堤动应力均随路面不平度值的增加而增大,且与车辆附加动荷载系数m近似为线性关系;提出不同路面不平度时车辆随机动荷载作用下低路堤动应力计算模型,并对比有限元模型得到的低路堤动应力与应力计算模型得到的低路堤动应力。  相似文献   

12.
针对SD型伸缩装置进行仿真分析,考虑车辆荷载的冲击作用,分析车辆不同行驶速度下该伸缩装置的动力性能。研究结果表明,车辆荷载不同的行驶速度下,伸缩装置的竖向位移基本一致。随着汽车行驶速度的增大,车辆制动力力增大,伸缩装置的横向位移显著增大。  相似文献   

13.
近年来,许多学者对行车荷载作用下路面的动力响应作了大量研究,但主要集中在分析静载对路基的影响以及路面结构材料对路面动力响应的影响,很少有研究考虑到路基土层,尤其是软土路基对行车荷载的动力响应.该文基于行车荷载作用下路基的动力特性原理,应用显式动力有限元法,充分考虑地基土的弹塑性特性,针对车辆单次加载作用下路基的特性以及反复加载作用下路基结构的累积竖向变形进行了分析和探讨.比较速度和轴重对路基沉降的影响,指出轴重对路基变形的影响更大.  相似文献   

14.
鉴于考虑路面厚度和材料刚度影响的 J.Boussinesg修正公式所得的路基工作区深度过小,仅至上路床部位,与实际情况不符。提出了基于竖向路基动应力分布规律确定路基工作区深度的方法。通过比较模型试验和计算模拟在竖向动应力和动位移沿深度方向的衰变规律,发现衰变规律在路基工作区深度范围符合性较好,验证了该方法的正确性与可靠性。对典型结构组合下路基动应力与工作区深度进行计算分析,分析结果表明:在标准汽车荷载100、130 kN 作用下,路基顶面动应力为6.4~13.4 kPa,相应的工作区深度为0.6~0.9 m。在重交通和特重交通的汽车荷载170 kN、200 kN 作用下,路床顶面动应力为12~20.6 kPa,相应的工作区深度为1.0~1.2 m,已进入上路堤范围0.2~0.4 m。  相似文献   

15.
基于GPS的润扬大桥悬索桥位移监测与分析   总被引:2,自引:0,他引:2  
介绍润扬大桥结构健康监测系统中的GPS子系统,对系统采集的大量数据进行了分析,研究了悬索桥在台风、温度、特殊车辆荷载作用下位移变化情况。研究结果表明:台风作用下桥面横向和竖向位移以跨中最大;温度对竖向以及顺桥向的位移有较大影响;正常运营状态下以及重车过桥时,桥面变形远小于设计荷载作用下的变形,结构具有较大的安全储备。  相似文献   

16.
吴湛 《公路与汽运》2023,(5):124-127+131
采用MIDAS/Civil建立某大跨预应力连续梁桥有限元模型,分析不同施工阶段荷载作用下桥梁位移和应力变化及施工过程中温度对主梁挠度的影响。结果表明,一个梁段施工完成后会影响前一个梁段标高,但各梁段控制偏差变化趋势大致相同;梁段悬臂越长,浇筑、张拉前后挠度越大;温度对悬臂梁段变形有很大影响,温度越高,悬臂竖向变形越大;大跨径连续梁桥悬臂施工时,预应力张拉产生的位移只能抵消一部分恒载位移;浇筑、张拉前后箱梁实测应力大多小于理论值,最大悬臂时梁段的预应力储备增大。  相似文献   

17.
以具体工程实例为依托,采取动力有限元与无限元相结合的分析方法,建立锚固边坡振动模型,对列车长期高速振动荷载影响下边坡岩土体及其锚固结构的动力响应特征展开了研究。结果表明:竖向位移动力特征显示,在高速列车荷载作用下,边坡竖向位移及加速度的最大值发生在坡脚处,最小值发生在坡顶处,随着边坡高度增加,竖向位移逐渐降低,且预应力锚杆框架对列车振动引起边坡沉降起到了一定的控制作用;水平位移动力特征显示,随着边坡高度增加,无锚固边坡水平方向位移峰值逐渐增大,水平位移动力响应最大值出现在坡顶,而坡脚的水平位移最小;列车荷载持续作用下,边坡岩土体内振动荷载逐步向远端传播,边坡位移变化范围也逐渐开始扩大,位移量值也开始增大,坡脚至第二级中部位移量达到1mm;在列车荷载作用下,上排锚杆轴力呈波动缓降趋势,缓降幅度0.63%,下排锚杆轴力呈波动上升趋势,上升幅度0.55%;边坡底部动态响应最为明显,振动加速度增幅最大,速度增幅次之,位移变化幅值最小,表明边坡底部的动力响应敏感性要显著大于边坡其他部位,这在边坡设计、加固治理中应引起格外注意。  相似文献   

18.
以车辆荷载作用下桩承式加筋路基为研究对象,引入黏弹性人工边界,建立了三维车辆-路基整体有限元分析模型,分析了车辆动荷载作用下桩承式加筋路基的动力响应特性。结果表明:加筋体的存在可有效减小车辆荷载作用下路基的动力响应,随加筋体层数及其弹性模量的增加,路基的动力响应减小更为显著;随着车辆荷载频率的增加,路基路面沉降及内部应力增大;路基竖向位移随桩间距的增加而增加,桩的模量对路基的动力响应也有一定的影响。  相似文献   

19.
结合高速公路拓宽工程,采用弹塑性三维数值方法,借助三维薄膜单元模拟土工格室,分析山区高填方加宽路堤的位移与沉降规律,提出优化的格室处治方案,同时进行了现场试验,分析格室处治后路堤深层侧向位移与沉降规律。结果表明:数值模拟与现场试验结果规律相符,高填方路堤在加宽路基自重荷载作用下竖向位移主要集中在加宽路堤的中上部,侧向位移从路基顶面到底部逐渐减少。受上部路堤土俯冲荷载作用,加宽路堤底部侧向位移相对附近土体较大。格室可有效减少高填方加宽路堤的侧向变形及扩散荷载传递。  相似文献   

20.
郭磊  禹姿含  许晓  王露露  桑运龙  丁爽 《公路》2021,66(11):349-358
苏州地铁S1线玉山广场站~珠江路站区间,穿越软塑~流塑地层,评估地面堆载引起隧道结构变形的安全范围,规避地面堆载诱发的安全隐患,是苏州地铁S1线周边地面规划急需解决的实际问题.针对该问题,利用ABAQUS有限元软件,采用地层-结构法建立隧道二维模型,对该区间穿越软塑~流塑地层的3种典型埋深下的盾构隧道在不同堆载范围、堆载大小和堆载位置作用下的变形特征进行模拟研究.研究结果表明:在堆载作用下,竖向位移首先出现在拱顶,并逐渐由两肩、拱腰向拱底发展,水平位移首先出现在左右拱腰位置并逐渐向拱顶和拱底发展;小量的堆载(≤20 kPa),无论其堆载范围、堆载位置如何,对隧道结构竖向位移和水平位移的影响约小于10 mm;堆载范围对竖向位移的影响随着堆载大小呈线性增大,拱腰处的水平位移先增大后减小;堆载位置偏离隧道正上方后,拱顶竖向位移(方向向下)逐渐减小,拱底竖向位移(方向向上)逐渐增大,拱腰的水平位移方向改变(向偏离堆载方向移动).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号