首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为提高城市快速路网的整体功能和运行效益,利用实时动态交通数据,根据动态交通因素对路段通行时间的影响,将城市快速路网划分为非拥塞和拥塞两种情况,基于安全停车距离和剩余通行能力,分别计算了两种情况的路段通行时间,提出了以行程时间最短为目标的城市快速路网行程时间计算与最优路径选择算法.将该算法应用于西安城市快速路网进行案例分析,结果表明:该算法的最优路径计算结果与实际相符,误差在15%以内;最优路径的距离约为最短路径的1.84倍.   相似文献   

2.
为解决交通网络最优路径问题,提出改进的行程时间估计模型,并设计基于该模型的最优路径算法。行程时间估计模型在分段截断二次速度轨迹模型的基础上进行改进,用路段节点的到达速度代替同一出发时刻下测得的速度,通过构造在时间和空间上连续的速度轨迹来估计行程时间。首先,基于Yen′s KSP算法以路段距离为阻抗求解K条最短路径;其次,分别用改进的行程时间估计模型估计K条最短路径的行程时间;最后,以行程时间为成本选择最优的路径。通过Sioux Falls网络的数值试验验证模型和算法的有效性和优越性。试验结果表明:改进的分段截断二次速度轨迹模型相比于原始模型精度平均提高了65%;算法的最优路径结果能减少路径经过的交叉口数和缩短最优路径的总长度,而且最优路径的行程时间估计结果 与真实值的MAPE保持在3%内。  相似文献   

3.
为了对交通管理系统中的事件管理提供可靠的决策依据,针对持续期为数天的交通事件,考虑事件发生后出行者日常路径选择的随机性,基于路径流量联合概率分布的动态调整过程,建立了描述路网系统路径行程时间变化的随机动态交通分配模型.并用算例网络验证了本文建立模型的可行性.算例研究结果表明:交通事件持续期每增加10 d,持续期内路径的平均行程时间增加0.24%;与普通路段相比,事件发生在关键路段导致平均行程时间增加3.07%; 路段通行能力每下降10%,平均行程时间增加2.53%;不同事发路段对路网系统在事件结束后恢复到均衡状态所需时间的差别显著,关键路段通行时间的恢复约为普通路段的4倍.   相似文献   

4.
降雨作为一种常见的气象条件,对高速公路网行程时间的稳定性有着直接的影响.本文针对雨天能见度降低、路面摩擦系数变小的特征,通过分析降雨的空间分布模式,建立了雨天路段单元自由流车速、通行能力以及公路网需求水平的修正模型,进而提出了雨天路段单元的广义行程时间函数.结合用户最优平衡分配模型,以及系统工程中的串并联理论,建立了雨天高速公路路段单元、路径、OD对和公路网的行程时间可靠度评价模型.应用Matlab工具箱模拟公路网上的降雨分布,设计了基于Monte Carlo方法的评价模型求解思路.最后以算例验证了该方法在行程时间可靠性评价中的应用.结果表明,能藉此有效地找出雨天公路网中行程时间敏感性最大的关键路段.  相似文献   

5.
封闭小区的开放可以增加城市道路网密度,缓解交通拥堵,但目前封闭小区开放方案的决策方式单一,且未考虑开放后给小区带来的汽车尾气和交通噪声污染问题。将交通环境影响纳入考量范围,以行程时间、尾气排放和交通噪声构成的总目标费用函数值最小作为优化目标。引入封闭小区是否开放、单双行和限速这3种决策方式,建立上层系统费用最优和下层用户均衡的封闭小区开放双层决策模型,并利用遗传算法和Frank-Wolfe算法分别对上、下层模型进行求解。 对模型优化效果进行验证分析,结果表明,所建模型最优解的费用值相对偏差为0.67%,应用此模型后同比节省费用平均值为11.80%。对比分析得到:合理设置封闭小区开放的3种决策方式,可 以减少车辆行程时间和绕行距离,降低出行者的出行费用和考虑交通环境影响的附加费用,且采取相对较高的限速值有利于降低出行总费用值。  相似文献   

6.
考虑溢流费用的路径选择模型的条件研究   总被引:1,自引:0,他引:1  
通过考虑路段的溢流费用,即路段交通负荷超过该路段交通负荷标准时所分配给用户的费用。路段交通负荷低于路段负荷标准时补贴给用户。建立一些约束条件,动态用户最优的路径选择条件和动态用户最优的溢流费用条件等。为进一步建立具有溢流费用的动态交通网络流的路径选择变分不等式模型及其算法研究打下基础。  相似文献   

7.
为了改善利用SCATS交通数据估计路段行程时间的效果,通过分析SCATS实际交通数据获取时间间隔不一致的特征,构建了SCATS交通数据虚拟时间序列,将利用因子分析法提取的累计贡献率在85%以上的主因子作为交通模式特征向量的构成要素,用欧氏距离作为当前交通模式特征向量和历史交通模式特征向量相似性的测度指标,以路段行程时间估计误差最小为目标选取当前交通模式的近邻数,对交通模式之间距离的倒数进行归一化处理,确定了相似交通模式的行程时间权重,设计了基于SCATS交通数据的路段行程时间估计方法.实例结果表明:与多元线性回归方法相比,本文方法估计的路段行程时间平均绝对误差、平均绝对百分比误差和均方根误差分别平均减少了9.68 s、8.07%和4.5 s.   相似文献   

8.
为降低交叉口车辆油耗,提高交叉口通行效率,以智能网联车车队作为引导对象,提出固定引导时长的车队车速引导策略.考虑车队初始速度和车队内车辆数的随机性,采用蒙特卡洛仿真获取单车平均油耗和平均行程时间.通过构建路段综合出行费用,对固定引导距离和固定引导时长两种策略进行了比较.研究结果表明:固定引导距离策略中,引导距离为350 m时综合出行费用最低;固定引导时间策略中,引导时间为6 s时综合出行费用最低;两种最优方案相比,后者油耗比前者低16.3%,后者行程时间比前者低7.2%,路段综合出行费用后者比前者低了10.2%;固定引导时长的车队车速引导策略可有效减少交叉口的车辆延误和燃油消耗.  相似文献   

9.
一体化公交网络均衡配流模型   总被引:1,自引:0,他引:1  
分析了一体化公交网络的交通特性,基于一体化公交出行的路径特点,研究了公交出行时间与出行费用因素对出行阻抗的影响.考虑人流密度对步行速度的影响以及出行费用与时间的换算关系,将公交出行的路段阻抗、节点阻抗与费用阻抗统一换算为时间,建立了一体化公交网络的出行阻抗函数.利用Wardrop均衡原理,建立了一体化公交网络的均衡配流模型,并通过FW算法对配流模型进行求解.计算结果表明:当地面公交线路长度与轨道交通长度分别为57.3、16.2 km时,轨道交通线路输送的客流量占总客运量的65.4%,通过换乘进入轨道交通系统的客流量达55.4%.构建合理的一体化公交网络能降低乘客出行总阻抗,提高公交系统运输效率.  相似文献   

10.
提出了两种不同疏散路径选择策略,即用户最优疏散策略(UE)和系统最优疏散策略(SO).前者依照个人最优路径,疏散车辆可以自由移动到另一条疏散路径使得相应疏散时间最短,后者通过疏散者之间相互协作或接受统一管理使得系统范围内出行总成本最小.通过对两者的比较研究,确立了疏散路径优化方案.以总疏散时间和疏散距离最小化为目标构建...  相似文献   

11.
为了及时识别出突发事件下城市道路的关键路段,以构建最短应急救援路径,本文提出了一套完整流程.首先,针对路网在应急条件下的贫信息环境特征,设计一种基于模糊综合评判的行程时间估算方法.然后,考虑救援人员的应急心理和经验选择行为,构建面向广义阻抗的GERT(Graph Evaluation and Review Technique)网络模型.最后,运用Dijkstra算法获得救援路径完成关键路段识别.以成都市某区域实际交通网络为算例进行验证,结果表明:基于2种模糊算子估算路段行程速度,其绝对误差为2.722 km/h,精度较高;与传统关键路段识别方法相比,GERT网络模型能更好地反映行程时间和路段拥挤度对路径选择行为的影响(拟合度80.95%),并将重要度识别技术从路网降低到路径层面,效果良好.  相似文献   

12.
基于超网络理论构建了可换乘条件下城市多方式交通系统的超网络模型,同时基于所建超网络,在考虑出行者的换乘规律和换乘行为等因素下,定义了可行超路径.将超网络的路段划分为行驶路段、换乘路段、上网路段和下网路段等4类,考虑出行时间、货币费用及舒适度感受3种因素,建立各类路段的广义费用函数及超路径广义费用函数.基于超路径费用,定义了有效超路径.在此基础上,提出城市多方式交通系统的随机平衡分配模型,并且提出了换乘约束下有效超路径和最短可行超路径的搜索算法.最后,通过一个数值算例说明所提出方法的可行性和有效性.  相似文献   

13.
基于均匀分布的路段容量,分析了降级路网中路段和路径出行时间的随机变动,假定出行者根据以往的出行经验获取路径出行时间的可变性,并以出行时间预算的形式将这种可变性纳入到其路径选择过程中,进而定义路径出行时间预算为路径出行时间均值与出行时间安全边际之和.在此基础上,采用变分不等式技术构建了基于出行时间预算的多用户类型弹性需求随机用户均衡交通分配模型,并证明了模型解的等价性.  相似文献   

14.
步行和自行车等外界因素对机动车流的影响也具有随机性,但是这种影响更多地表现为可预见性和可控制性(尤其从交通管理的角度来看),可以说这种影响将导致可预见性的路段实际通过能力降级,并且可预见性特征使得这种影响不同于随机用户平衡中路段旅行时间的感知误差.笔者通过区分路段通过能力降级因素为内因(路段上车流量增加导致道路服务水平降级)和外因(由与路段上与车流量无关的外部因素,如随意过街人流、自行车流等外部因素,引起的道路通过能力降级),并且区分路段旅行时间为通行能力降级路段上行程时间和排解交通拥堵花费的滞留时间两个构成部分的基础上,建立了考虑自行车步行影响的交通平衡综合分析模型;通过对路段参数敏感性分析和实例对照,既展示了该综合分析模型-路径期望旅行时间平衡分析模型与确定性网络用户平衡分析模型的差异性,又展示了路径期望旅行时间平衡分析模型能较好地再现人们对道路路段通行能力降级情形下的车流路径选择行为.  相似文献   

15.
描述了综合客运通道的网络结构,分析了通道内旅客出行的广义费用函数,将运输成本、安全性、舒适性等服务属性作为出行阻抗的度量因素,以添加新的旅客运输方式为手段来优化旅客运输网络,设计了综合客运通道离散型网络优化设计问题的双层规划模型,上层模型以网络容纳的OD需求量最大为目标,下层模型为用户平衡问题.采用分支定界法对模型进行求解,并通过算例证明了模型的有效性.根据结果比较各方案的单位投资额所引起的网络容纳OD需求增加量,进一步从投资效率角度解释了方案的优劣,分析表明,该模型和算法能够得到综合客运通道网络优化设计的最优投资方案,为建设决策部门提供定量的决策支持.  相似文献   

16.
在城市交通网络中,为了优化交通流,需要搜索到符合出行需求 K 最短路径,并 将 OD(Origin-Destination)交通流合理分配到这些路径上.本文主要对搜索符合出行需 求的 K 最短路径搜索算法进行了研究,解决了已有算法仅能搜索出单条满足最短及 K 最 短条件路径的问题.根据 Wardrop 第二原则及路段阻抗函数理论,分析了路径集合搜索方 法对优化城市交通流的必要性,并定义了城市交通网络中 K 最短路径集合的概念及选择 条件,提出了一种面向城市交通网络的具有多项式时间复杂度的 K 最短路径集合搜索算 法.仿真结果表明,本文所提算法可以搜索出满足出行需求的所有 K 最短路径集合,在该 路径集合上进行交通流分配的效果明显优于传统方法.  相似文献   

17.
以路段失效影响范围界定为研究基础,将路段关键度计算从路段薄弱性和重 要性两方面进行量化:路段薄弱性以路段失效情况下,计算路段失效概率来确定;路段重 要性评价,通过对失效路段后交通网络重构,将局域节点OD对在路段失效影响范围局部 路网结构上重分配,以出行者时间费用变化影响指标F(U fa) ,局部路网路段交通负荷变化 影响指标F(S fa) 两方面作为评价指标来计算路段重要度.该方法符合路段失效后路网的 变化情况,有效避免了目前时变性的OD数据难以获取的问题,解决了现有评价指标选取 时的单一性问题.经过实验证明,该算法能够有效地应用于大规模路网结构路段关键度快 速计算,为关键路段识别、道路封闭影响评价等提供理论依据.  相似文献   

18.
提出一种基于路段间转移概率的最优路径预测方法,即根据出行时间,将历史出行数据分为早高峰、晚高峰、非高峰3组反映不同交通状况的时间段;根据起点和终点所在区域,对出行数据作进一步处理,解决给定起点与终点之间出行数据不足的问题。基于有经验的出行者选择路径即为最优路径这一假设,通过历史出行轨迹计算得到路段间的转移概率,建立Markov链模拟出行者路段选择行为,将最大选择概率路径作为最优路径的预测结果,并给出其求解方法。该方法仅利用历史出行轨迹进行最优路径预测,避免了复杂的路段阻抗计算,且具有数据易获取,与实际出行行为一致性高,计算量小的优点。案例分析表明,预测结果准确性在不同出行时段下产生变化,而交通区域划分的大小对其影响较小。  相似文献   

19.
随机需求道路网络出行时间可靠性评估方法   总被引:3,自引:1,他引:2       下载免费PDF全文
为提高不确定路网可靠性评估的合理性,设需求服从对数正态分布,假定出行者在随机需求作用下能 够达到确定性用户均衡,运用路径算法获得流量,根据BPR(bureauofpublicroads)型路段特性函数以及对数正 态分布的概率特性,给出了路径出行时间的随机分布,以此为基础建立了路径及OD对出行时间可靠性评估模 型.用数值算例验证了评估方法的可行性,分析结果表明该方法能够合理评价需求及其波动程度、路径之间的相 关程度对出行时间可靠性的影响.   相似文献   

20.
为全面回顾定制公交线路优化问题的研究进展,从优化目标、问题场景和求解算法3个方面对相关文献进行了归类分析。研究结果表明:定制公交线路的单目标优化研究主要集中在行驶时间、运营里程、运营成本、运营收益以及多种成本线性加权形成的系统总成本等方面,而多目标优化研究主要通过同时考虑运营成本、出行成本和服务质量中的2种或3种来实现;根据出发和到达站点的数量,定制公交线路优化的问题场景可分为“一对一”、“多对一”和“多对多”3种,针对停靠站点之间时间阻抗场景的研究主要集中在“静态时间阻抗”,对“动态时间阻抗”的研究较少;出行需求场景的研究也主要集中在“静态出行需求”,对于“动态出行需求场景”,一般通过两阶段优化策略进行求解;由于定制公交的线路优化问题属于一种特殊的车辆路径优化问题,精确求解算法适用于少量出行需求的分析案例,针对大规模出行需求的实际问题,一般采用启发式智能算法进行求解。未来的研究中,定制公交的线路优化需要考虑停车场设置和停靠点选择的影响,针对不同类型出行者设置特定的时间窗属性;此外,大数据背景下如何兼顾实时出行需求和运营成本约束,提供差异化的定制公交线路也将是具有挑战的研究方向。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号