首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A growing base of research adopts direct demand models to reveal associations between transit ridership and influence factors in recent years. This study is designed to investigate the factors affecting rail transit ridership at both station level and station-to-station level by adopting multiple regression model and multiplicative model respectively, specifically using an implemented Metro system in Nanjing, China, where Metro implementation is on the rise. Independent variables include factors measuring land-use mix, intermodal connection, station context, and travel impedance. Multiple regression model proves 11 variables are significantly associated with Metro ridership at station level: population, employment, business/office floor area, CBD dummy variable, number of major educational sites, entertainment venues and shopping centers, road length, feeder bus lines, bicycle park-and-ride (P&R) spaces, and transfer dummy variable. Results from multiplicative model indicate that factors influencing Metro station ridership may also influence Metro station-to-station ridership, varied by both trip ends (origin/destination) and time of day. In comparison with previous case studies, CBD dummy variable and bicycle P&R are statistically significant to explain Metro ridership in Nanjing. In addition, Metro travel impedance variables have significant influence on station-to-station ridership, representing the basic time-decay relationship in travel distribution. Potential implications of the model results include estimating Metro ridership at station level and station-to-station level by considering the significant variables, recognizing the necessity to establish a cooperative multi-modal transit system, and identifying opportunities for transit-oriented development.  相似文献   

2.
Promoting public transit is a well-recognized policy for sustainable urban transport development. Transit demand analysis proves to be a challenging task in fast growing cities, partially due to the lack of reliable data and applicable techniques for rapidly changing urban contexts. This paper presents an effort to meet the challenge by developing a framework to estimate peak-hour boarding at light-rail transit (LRT) stations. The core part of the framework is an accessibility-weighted ridership model that multiplies potential demand by integral LRT accessibility. Potential demand around LRT stations is generated by using a distance-decay function. The integral LRT accessibility is a route-level factor that indicates the degree of attractiveness to LRT travel for stations in an LRT corridor. A case study in Wuhan, China, shows that the proposed method produces results useful for improving transit demand analysis.  相似文献   

3.
An analysis of Metro ridership at the station-to-station level in Seoul   总被引:2,自引:0,他引:2  
While most aggregate studies of transit ridership are conducted at either the stop or the route level, the present study focused on factors affecting Metro ridership in the Seoul metropolitan area at the station-to-station level. The station-to-station analysis made it possible to distinguish the effect of origin factors on Metro ridership from that of destination factors and to cut down the errors caused by the aggregation of travel impedance-related variables. After adopting two types of direct-demand patronage forecasting models, the multiplicative model and the Poisson regression model, the former was found to be superior to the latter because it clearly identified the negative influences of competing modes on Metro ridership. Such results are rarely found with aggregate level analyses. Moreover, the importance of built environment in explaining Metro demand was confirmed by separating built environment variables for origin and destination stations and by differentiating ridership by the time of day. For morning peak hours, the population-related variables of the origin stations played a key role in accounting for Metro ridership, while employment-related variables prevailed in destination stations. In evening peak hours, both employment- and population-related variables were significant in accounting for the Metro ridership at the destination station. This showed that a significant number of people in the Seoul metropolitan area appear to take various non-home-based trips after work, which is consistent with the results from direct household travel surveys.  相似文献   

4.
Utilizing daily ridership data, literature has shown that adverse weather conditions have a negative impact on transit ridership and in turn, result in revenue loss for the transit agencies. This paper extends this discussion by using more detailed hourly ridership data to model the weather effects. For this purpose, the daily and hourly subway ridership from New York City Transit for the years 2010–2011 is utilized. The paper compares the weather impacts on ridership based on day of week and time of day combinations and further demonstrates that the weather’s impact on transit ridership varies based on the time period and location. The separation of ridership models based on time of day provides a deeper understanding of the relationship between trip purpose and weather for transit riders. The paper investigates the role of station characteristics such as weather protection, accessibility, proximity and the connecting bus services by developing models based on station types. The findings indicate substantial differences in the extent to which the daily and hourly models and the individual weather elements are able to explain the ridership variability and travel behavior of transit riders. By utilizing the time of day and station based models, the paper demonstrates the potential sources of weather impact on transit infrastructure, transit service and trip characteristics. The results suggest the development of specific policy measures which can help the transit agencies to mitigate the ridership differences due to adverse weather conditions.  相似文献   

5.
The current study contributes to the literature on transit ridership by considering daily boarding and alighting data from a recently launched commuter rail system in Orlando, Florida – SunRail. The analysis is conducted based on daily boarding and alighting data for 10 months for the year 2015. With the availability of repeated observations for every station, the potential impact of common unobserved factors affecting ridership variables are considered. The current study develops an estimation framework, for boarding and alighting separately, that accounts for these unobserved effects at multiple levels – station, station-week and station-day. In addition, the study examines the impact of various observed exogenous factors such as station level, transportation infrastructure, transit infrastructure, land use, built environment, sociodemographic and weather variables on ridership. The model system developed will allow us to predict ridership for existing stations in the future as well as potential ridership for future expansion sites.  相似文献   

6.
This paper summarizes and updates the findings from an earlier study by the same authors of transit systems in Houston (all bus) and San Diego (bus and light rail). Both systems achieved unusually large increases in transit ridership during a period in which most transit systems in other metropolitan areas were experiencing large losses. Based on ridership models estimated using cross section and time series data, the paper quantifies the relative contributions of policy variables and factors beyond the control of transit operators on ridership growth. It is found that large ridership increases in both areas are caused principally by large service increases and fare reductions, as well as metropolitan employment and population growth. In addition, the paper provides careful estimates of total and operating costs per passenger boarding and per passenger mile for Houston's bus operator and San Diego's bus and light rail operators. These estimates suggest that the bus systems are more cost-effective than the light rail system on the basis of total costs. Finally, the paper carries out a series of policy simulations to analyze the effects of transit funding levels and metropolitan development patterns on transit ridership and farebox recovery ratio.  相似文献   

7.

A methodology for comparing phased implementation plans for a new fixed guideway transit system in an urban area is presented. Four assumptions are made: (1) the guideway system replaces existing or planned bus service, (2) superior service on the new system results in increased ridership when compared to buses; (3) presence of the guideway facility redirects outward urban growth resulting in additional ridership, and (4) conversely, the absence of any action on the new guideway facility reinforces a diffuse urban growth pattern that creates an irreversible loss of transit ridership. The economic comparision of alternative plans includes total as well as “relative” inflation of principal cost components. A key feature of the proposed methodology is including in the comparisons the costs of private automobile mileage that could have been replaced by transit. These costs are expressed as “fuel” and “all other” automobile costs; favorable transit system implementation schedules can then be identified as a function of parametrically assumed values for these two unit costs. A hypothetical example demonstrates the proposed method.  相似文献   

8.
Unlimited Access   总被引:1,自引:0,他引:1  
Brown  Jeffrey  Hess  Daniel Baldwin  Shoup  Donald 《Transportation》2001,28(3):233-267
Universities and public transit agencies have together invented an arrangement – called Unlimited Access – that provides fare-free transit service for over 825,000 people. The university typically pays the transit agency an annual lump sum based on expected student ridership, and students simply show their university identification to board the bus. This paper reports the results of a survey of Unlimited Access programs at 35 universities. University officials report that Unlimited Access reduces parking demand, increases students' access to the campus, helps to recruit and retain students, and reduces the cost of attending college. Transit agencies report that Unlimited Access increases ridership, fills empty seats, improves transit service, and reduces the operating cost per rider. Increases in student transit ridership ranged from 71 percent to 200 percent during the first year of Unlimited Access, and growth in subsequent years ranged from 2 percent to 10 percent per year. The universities' average cost for Unlimited Access is $30 per student per year.  相似文献   

9.
Ridership estimation is a critical step in the planning of a new transit route or change in service. Very often, when a new transit route is introduced, the existing routes will be modified, vehicle capacities changed, or service headways adjusted. This has made ridership forecasts for the new, existing, and modified routes challenging. This paper proposes and demonstrates a procedure that forecasts the ridership of all transit routes along a corridor when a new bus rapid transit (BRT) service is introduced and existing regular bus services are adjusted. The procedure uses demographic data along the corridor, a recent origin–destination survey data, and new and existing transit service features as inputs. It consists of two stages of transit assignment. In the first stage, a transit assignment is performed with the existing transit demand on the proposed BRT and existing bus routes, so that adjustments to the existing bus services can be identified. This transit assignment is performed iteratively until there is no adjustment in transit services. In the second stage, the transit assignment is carried out with the new BRT and adjusted regular bus services, but incorporates a potential growth in ridership because of the new BRT service. The final outputs of the procedure are ridership for all routes and route segments, boarding and alighting volumes at all stops, and a stop‐by‐stop trip matrix. The proposed ridership estimation procedure is applicable to a new BRT route with and without competing regular bus routes and with BRT vehicles traveling in dedicated lanes or in mixed traffic. The application of the proposed procedure is demonstrated via a case study along the Alameda Corridor in El Paso, Texas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Researchers have produced sophisticated modal split and transit demand models, including forecasts that are sensitive to the level of service. However, little effort has been made to integrate these models into corridor studies and route alignment analyses since (a) re-routing is itself an extremely complex modeling task, and (b) the results of the demand models are presented in tabular form with no facility to visualize spatial patterns and relationships that, if recognized, would aid in the routing tasks. GIS tools can be used, together with the demand models, to identify both clusters of city blocks that house families with certain socioeconomic characteristics and potential trip destinations conducive to transit use. In other words, GIS tools can be used to better measure some of the factors that are needed by transit demand models. The results of these models can be displayed graphically, enabling analysts to target places needing improved service, evaluate route re-alignment alternatives, and operate more efficient and effective bus lines. This paper examines how a particular class of model used by transit agencies for estimating ridership can be integrated with GIS tools in order to facilitate such analyses. It also explores the effects of visualization of routes, demographics, and employment data on the process of designing route alignments with better targeting of high transit ridership areas. This paper is part of a research project sponsored by the Region One University Transportation Center, at MIT.  相似文献   

11.
Estimation of ridership on a new transit system in an area where no comparable service existed before is a difficult task of transit planning. Traditional modal split models cannot be used in these cases, because no data or basis for developing a new model or adjusting a “borrowed” model are available. One of the techniques which can be used in this type of situation, is to perform a “concept test” based on public opinion. This approach, however, is plagued with the phenomenon of non-commitment bias of interviewees, and tends to overestimate the ridership. A new fixed route and fixed schedule transit service in Johnson City in Tennessee provided a rare opportunity to perform an investigation on the non-commitment bias through “before” and “after” surveys. The analysis of the non-commitment and actual responses of a sample of residents revealed substantial bias. Overall, the non-commitment ridership estimate was about twice (100% greater than) the actual ridership.:It was also observed that the bias was higher for persons owning automobiles, and for work and shopping trips.  相似文献   

12.
Transit ridership is usually sensitive to fares, travel times, waiting times, and access times, among other factors. Therefore, the elasticities of demand with respect to such factors should be considered in modeling bus transit services and must be considered when maximizing net benefits (i.e. “system welfare” = consumer surplus + producer surplus) rather just minimizing costs. In this paper welfare is maximized with elastic demand relations for both conventional (fixed route) and flexible-route services in systems with multiple dissimilar regions and periods. As maximum welfare formulations are usually too complex for exact solutions, they have only been used in a few studies focused on conventional transit services. This limitation is overcome here for both conventional and flexible transit services by using a Real Coded Genetic Algorithm to solve such mixed integer nonlinear welfare maximization problems with constraints on capacities and subsidies. The optimized variables include service type, zone sizes, headways and fares. We also determine the maximum welfare threshold between optimized conventional and flexible services) and explore the effects of subsidies. The proposed planning models should be useful in selecting the service type and optimizing other service characteristics based on local geographic characteristics and financial constraints.  相似文献   

13.
Transit oriented development (TOD) has been an important topic for urban transportation planning research and practice. This paper is aimed at empirically examining the effect of rail transit station-based TOD on daily station passenger volume. Using integrated circuit (IC) card data on metro passenger volumes and cellular signaling data on the spatial distribution of human activities in Shanghai, the research identifies variations in ridership among rail transit stations. Then, regression analysis is performed using passenger volume in each station as the dependent variable. Explanatory variables include station area employment and population, residents’ commuting distances, metro network accessibility, status as interchange station, and coupling with commercial activity centers. The main findings are: (1) Passenger volume is positively associated with employment density and residents’ commuting distance around station; (2) stations with earlier opening dates and serving as transfer nodes tend to have positive association with passenger volumes; (3) metro stations better integrated with nearby commercial development tend to have larger passenger volumes. Several implications are drawn for TOD planning: (1) TOD planning should be integrated with rail transit network planning; (2) location of metro stations should be coupled with commercial development; (3) high employment densities should be especially encouraged as a key TOD feature; and (4) interchange stations should be more strategically positioned in the planning for rail transit network.  相似文献   

14.
We develop a short turning model using demand information from station to station within a single bus line-single period setting, aimed at increasing the service frequency on the more loaded sections to deal with spatial concentration of demand considering both operators’ and users’ costs. We find analytical expressions for optimal values of the design variables, namely frequencies (inside and outside the short cycle), capacity of vehicles and the position of the short turn limit stations. These expressions are used to analyze the influence of different parameters in the final solution. The design variables and the corresponding cost components for operators and users (waiting and in-vehicle times) are compared against an optimized normal operation scheme (single frequency). Applications on actual transit corridors exhibiting different demand profiles are conducted, calculating the optimal values for the design variables and the resulting benefits for each case. Results show the typical demand configurations that are better served using a short turn strategy.  相似文献   

15.
The percentage of the population being served by a transit system in a metropolitan region is a key system performance measure but depends heavily on the definition of service area. Observing existing service areas can help identify transit system gaps and redundancies. In the public transit industry, buffers at 400 m (0.25 miles) around bus stops and 800 m (0.5 miles) around rail stations are commonly used to identify the area from which most transit users will access the system by foot. This study uses detailed OD survey information to generate service areas that define walking catchment areas around transit services in Montreal, Canada. The 85th percentile walking distance to bus transit service is found to be around 524 m for home-based trip origins, 1,259 m for home-based commuter rail trip origins. Yet these values are found to vary based on our analysis using two statistical models. Walking distances vary based on route and trip qualities (such as type of transit service, transfers and wait time), as well as personal, household, and neighbourhood characteristics. Accordingly, service areas around transit stations should vary based on the service offered and attributes of the people and places served. The generated service areas derived from the generalized statistical model are then used to identify gaps and redundancies at the system and route level using Montreal region as an example. This study can be of benefit to transport engineers and planners trying to maximize transit service coverage in a region while avoiding oversupply of service.  相似文献   

16.
A mathematical model is developed to optimize social and fiscal sustainable operation of a feeder bus system considering realistic network and heterogeneous demand. The objective total profit is a nonlinear, mixed integer function, which is maximized by optimizing the number of stops, headway, and fare. The stops are located which maximize the ridership. The demand elasticity for the bus service is dependent on passengers' access distance, wait time, in‐vehicle time, and fare. An optimization algorithm is developed to search for the optimal solution that maximizes the profit. The modeling approach is applied to planning a bus transit system within Woodbridge, New Jersey. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This study investigates the asymmetric effects of gasoline prices on public transportation use in Taiwan. The empirical results obtained are as follows. First, we verify that gasoline price is an important determinant of transit demand. Gasoline prices have significantly positive effects on bus and mass rapid transit (MRT) use. Second, MRT ridership is more sensitive than bus and railway ridership to gasoline price and income. In the face of oil prices escalation and economic growth, the MRT system should have higher priority in public transportation planning. Third, the effects of gasoline prices on bus and MRT use are asymmetric. Bus and MRT use increases faster when gasoline prices rise than it decreases when gasoline prices fall. The transit agencies should adjust operating strategies faster in the rising of oil prices than in the falling of oil prices. It is important for transit planning to use oil prices as signals and increase the flexibility of operation in dealing with the changes in ridership. Some strategies, such as enhancing the availability of transfer information and updating transit information timely, are helpful to move passengers efficiently.  相似文献   

18.
The objective of this research was to develop a simple transit ridership estimation model system for short-range planning. The main feature of the model system is that it exploits knowledge of transit link volumes which are obtained readily from on-off counts. Extensive use is made of default values for model parameters, taken directly from the transportation literature. The remaining parameters can be derived easily from generally available land-use and socioeconomic data. Expensive household surveys and time-consuming model calibrations are not required. A sequence of simple trip generation, trip distribution and modal split models generate trip-purpose specific transit trip tables, denoted as “trial” trip tables. These trip tables and observed transit link volumes are used in a linear programming model which serves as a correction mechanism. The gain in accuracy is achieved by using the ridership information contained in the transit link volumes. The corrected trip tables may be used in a pivot-point analysis to estimate changes in ridership and revenue. The results of a test application of the model system indicate that it can generate accurate ridership estimates when reliable transit link volumes are available from on-off counts, and when the trial transit trip tables as derived from the first three component models are reasonably accurate.  相似文献   

19.
Very few studies have examined the impact of built environment on urban rail transit ridership at the station-to-station (origin-destination) level. Moreover, most direct ridership models (DRMs) tend to involve simple a prior assumed linear or log-linear relationship in which the estimated parameters are assumed to hold across the entire data space of the explanatory variables. These models cannot detect any changes in the linear (or non-linear) effects across different values of the features of built environment on urban rail transit ridership, which possibly induces biased results and hides some non-negligible and detailed information. Based on these research gaps, this study develops a time-of-day origin-destination DRM that uses smart card data pertaining to the Nanjing metro system, China. It applies a gradient boosting regression trees model to provide a more refined data mining approach to investigate the non-linear associations between features of the built environment and station-to-station ridership. Data related to the built environment, station type, demographics, and travel impedance including a less used variable – detour, were collected and used in the analysis. The empirical results show that most independent variables are associated with station-to-station ridership in a discontinuous non-linear way, regardless of the time period. The built environment on the origin side has a larger effect on station-to-station ridership than the built environment on the destination side for the morning peak hours, while the opposite holds for the afternoon peak hours and night. The results also indicate that transfer times is more important variables than detour and route distance.  相似文献   

20.
Zhu  Yadi  Chen  Feng  Wang  Zijia  Deng  Jin 《Transportation》2019,46(6):2269-2289

The development of new routes and stations, as well as changes in land use, can have significant impacts on public transit ridership. Thus, transport departments and governments should seek to determine the level and spatio-temporal dependency of these impacts with the aim of adjusting services or improving planning. However, existing studies primarily focus on predicting ridership, and pay relatively little attention to analyzing the determinants of ridership from temporal and spatial perspectives. Consequently, no comprehensive cognition of the spatio-temporal relationship between station ridership and the built environment can be obtained from previous models, which makes them unable to facilitate the optimization of transportation demands and services. To rectify this problem, we have employed a Bayesian negative binomial regression model to identify the significant impact factors associated with entry/exit ridership at different periods of the day. Based on this model, we formulated geographically weighted models to analyze the spatial dependency of these impacts over different periods. The spatio-temporal relationship between station ridership and the built environment was analyzed using data from Beijing. The results reveal that the temporal impacts of most ridership determinants are related to the passenger trip patterns. Furthermore, the spatial impacts correspond with the determinants’ spatial distribution, and the results give some implications on urban and transportation planning. This analysis gives a common analytical framework analyzing impacts of urban characteristics on ridership, and extending researches on how we capture the impacts of urban and other factors on ridership from a comprehensive perspective.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号