首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this research is to identify the factors differentiating between single heavy vehicle collisions at intersections and midblocks by using a binary logit model. Our results show that single vehicle crashes involving heavy vehicle at intersections are more likely to occur on main roads and highways, whereas crashes at midblocks are more likely to occur on divided two‐way roads, roads with special facilities or features (e.g. bridge) and roads with a higher percentage of heavy vehicle traffic. Intersection crashes are also more likely to involve vehicles that are turning left or right, resulting in angle crashes and vehicle overturn, whereas midblock crashes are more likely to involve vehicles on higher posted speed roads. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Road crashes are a leading cause of death and serious injuries both developed and developing countries. Intersections are recognized as being among the most hazardous locations on the roads. Although crashes at intersections form about 35 % of the reported accidents account for about 32% of traffic‐related serious injuries and fatalities in Singapore, there is no known study that examines the factors contributing to the severity of these crashes. In this study, the ordinal probit model was applied to crash data from 1992 to 2002 to investigate the role a variety of factors play in determining the severity of intersection crashes. Our study shows that vehicle type, road type, collision type, driver's characteristics and time of day are important determinants of the severity of crashes at intersections in Singapore.  相似文献   

3.
4.
Pedestrians and cyclists are vulnerable road users. They are at greater risk for being killed in a crash than other road users. The percentage of fatal crashes that involve a pedestrian or cyclist is higher than the overall percentage of total trips taken by both modes. Because of this risk, finding ways to minimize problematic street environments is critical. Understanding traffic safety spatial patterns and identifying dangerous locations with significantly high crash risks for pedestrians and cyclists is essential in order to design possible countermeasures to improve road safety. This research develops two indicators for examining spatial correlation patterns between elements of the built environment (intersections) and crashes (pedestrian- or cyclist-involved). The global colocation quotient detects the overall connection in an area while the local colocation quotient identifies the locations of high-risk intersections. To illustrate our approach, we applied the methods to inspect the colocation patterns between pedestrian- or cyclist-vehicle crashes and intersections in Houston, Texas and we identified among many intersections the ones that significantly attract crashes. We also scrutinized those intersections, discussed possible attributes leading to high colocation of crashes, and proposed corresponding countermeasures.  相似文献   

5.
Proper intersection sight distance can effectively lower the possibility of intersection accidents. American Association of State Highway and Transportation Officials (2011) provide a series of recommended dimensions of intersection sight triangles for uncontrolled and stop/yield‐controlled intersections. However, in reality, although the actual intersection design for unsignalized intersections satisfies the requirements of sight distance and clear sight triangle in American Association of State Highway and Transportation Officials' guideline, there are still a large number of crashes occurring at unsignalized intersections for drivers running stop/yield signs or failing to slow down. This paper presents a driving simulator study on pre‐crash at intersections under three intersection field of view (IFOV) conditions. The aim was to explore whether better IFOVs at unsignalized intersections improve their emergent collision avoidance performance under an assumption of valid intersection sight distance design. The experimental results show drivers' ability to identify potential hazards to be significantly affected by their IFOVs. As drivers' IFOV improved, drivers were more likely to choose braking actions to avoid collisions. Better IFOVs were also associated with significant increases in brake time to intersection and significant reductions in deceleration rate and crash rate, thus leading to a lower risk of traffic crash involvement. The results indicate that providing a better IFOV for drivers at intersections should be encouraged in practical applications in order to improve drivers' crash avoidance capabilities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The safety of signalized intersections has often been evaluated at an aggregate level relating collisions to annual traffic volume and the geometric characteristics of the intersection. However, for many safety issues, it is essential to understand how changes in traffic parameters and signal control affect safety at the signal cycle level. This paper develops conflict-based safety performance functions (SPFs) for signalized intersections at the signal cycle level. Traffic video-data was recorded for six signalized intersections located in two cities in Canada. A video analysis procedure is proposed to collect rear-end conflicts and various traffic variables at each signal cycle from the recorded videos. The traffic variables include: traffic volume, maximum queue length, shock wave characteristics (e.g. shock wave speed and shock wave area), and the platoon ratio. The SPFs are developed using the generalized linear models (GLM) approach. The results show that all models have good fit and almost all the explanatory variables are statistically significant leading to better prediction of conflict occurrence beyond what can be expected from the traffic volume only. Furthermore, space-time conflict heat maps are developed to investigate the distribution of the traffic conflicts. The heat maps illustrate graphically the association between rear-end conflicts and various traffic parameters. The developed models can give insight about how changes in the signal cycle design affect the safety of signalized intersections. The overall goal is to use the developed models for the real-time optimization of signalized intersection safety by changing the signal design.  相似文献   

7.
非灯控交叉口是交通流中的节点,对非灯控交叉口的交通安全状况进行评价具有导向性意义。文章针对交叉口管控存在的问题,提出了交通安全状况评价原则和主要方法,阐述了非灯控交叉口交通安全的影响因素,并通过对沈阳市刘家窑十字交叉口进行交通安全状况评价,提出了具体的交叉口交通安全改善措施,以提高非灯控交叉口的交通安全性。  相似文献   

8.
This work examines the possibility of splitting an uncontrolled “X” intersection into two adjacent uncontrolled “T” intersections. This splitting aims to improve both the movement and safety of traffic. The problem addressed in this work is how to determine the optimal distance between the two adjacent T intersections. The best type of split, based on previous studies, is the one in which vehicles approach first the right turn and then the left turn in both directions of travel. The main conclusions drawn in this work refer to this preferred type. The optimal distance is arrived at on the basis of an objective function of minimal delay subject to blocking queues, passing (another vehicle) probabilities, budget limitations and safety threshold. The input data consist of 12 traffic volumes associated with all the traffic movements of an X intersection. The main findings are: (a) under a medium level of traffic volume, the blocking queue lengths are of the order of hundreds of meters and are very sensitive to the increase of volume toward and beyond saturation flow; (b) the passing probability function along the road segment between the two adjacent T intersections increases with the length of the segment and stabilizes at a length of a few hundred meters; (c) there is a relationship between accident frequency (accident rate and density) and the distance between the split intersections. An example of this relationship is introduced; and (d) the optimal distance between the two adjacent T intersections is found not only theoretically, but also practically for possible implementations.  相似文献   

9.
Reservation-based intersection control is a revolutionary idea for using connected autonomous vehicle technologies to improve intersection controls. Vehicles individually request permission to follow precise paths through the intersection at specific times from an intersection manager agent. Previous studies have shown that reservations can reduce delays beyond optimized signals in many demand scenarios. The purpose of this paper is to demonstrate that signals can outperform reservations through theoretical and realistic examples. We present two examples that exploit the reservation protocol to prioritize vehicles on local roads over vehicles on arterials, increasing the total vehicle delay. A third theoretical example demonstrates that reservations can encourage selfish route choice leading to arbitrarily large queues. Next, we present two realistic networks taken from metropolitan planning organization data in which reservations perform worse than signals. We conclude with significantly positive results from comparing reservations and signals on the downtown Austin grid network using dynamic traffic assignment. Overall, these results indicate that network-based analyses are needed to detect adverse route choices before traffic signals can be replaced with reservation controls. In asymmetric intersections (e.g. local road-arterial intersections), reservation controls can cause several potential issues. However, in networks with more symmetric intersections such as a downtown grid, reservations have great potential to improve traffic.  相似文献   

10.
Urban intersections crashes cause significant economic loss. The safety management process undertaken by most states in the United States is referred to as Highway Safety Improvement Program and consists of three standardized steps: (i) identification of critical crash locations, (ii) development of countermeasures, and (iii) resource allocation among identified crash locations. Often these three steps are undertaken independently, with limited detail of each step at the state planning agencies. The literature review underlines the importance of the third step, and the lack of sophisticated tools available to state planning agencies for leveraging information obtained from the first two steps. Further, non-strategic approaches and unavailability of methods for evaluating policies may lead to sub-optimal funding allocation. This paper overcomes these limitations and proposes multiple optimal resource allocation strategies for improvements at urban intersections that maximize safety benefits, under budget and policy constraints. Proposed policy measures based on benefits maximization (economic competitiveness), equitable allocation (equity), and relaxation of mutually exclusiveness (multiple alternatives at one location) produce significantly different alternative and fund allocation. The proposed models are applied to selected intersections in four counties of southeast Michigan. Results reinforce the applicability of the strategies/policies and tools developed in this paper for safety project funding allocation on critical urban intersections.  相似文献   

11.
Establishment of effective cooperation between vehicles and transportation infrastructure improves travel reliability in urban transportation networks. Lack of collaboration, however, exacerbates congestion due mainly to frequent stops at signalized intersections. It is beneficial to develop a control logic that collects basic safety message from approaching connected and autonomous vehicles and guarantees efficient intersection operations with safe and incident free vehicle maneuvers. In this paper, a signal-head-free intersection control logic is formulated into a dynamic programming model that aims to maximize the intersection throughput. A stochastic look-ahead technique is proposed based on Monte Carlo tree search algorithm to determine the near-optimal actions (i.e., acceleration rates) over time to prevent movement conflicts. Our numerical results confirm that the proposed technique can solve the problem efficiently and addresses the consequences of existing traffic signals. The proposed approach, while completely avoids incidents at intersections, significantly reduces travel time (ranging between 59.4% and 83.7% when compared to fixed-time and fully-actuated control strategies) at intersections under various demand patterns.  相似文献   

12.
An important question for the practical applicability of the highly efficient traffic intersection control is about the minimal level of intelligence the vehicles need to have so as to move beyond the traffic light control. We propose an efficient intersection traffic control scheme without the traffic lights, that only requires a majority of vehicles on the road to be equipped with a simple driver assistance system. The algorithm of our scheme is completely decentralised, and takes into full account the non-linear interaction between the vehicles at high density. For vehicles approaching the intersection in different directions, our algorithm imposes simple interactions between vehicles around the intersection, by defining specific conditions on the real-time basis, for which the involved vehicles are required to briefly adjust their dynamics. This leads to a self-organised traffic flow that is safe, robust, and efficient. We also take into account of the driver comfort level and study its effect on the control efficiency. The scheme has low technological barrier, minimal impact on the conventional driving behaviour, and can coexist with the traffic light control. It also has the advantages of being easily scalable, and fully compatible with both the conventional road systems as well as the futuristic scenario in which driverless vehicles dominate the road. The mathematical formulation of our scheme permits large scale realistic numerical simulations of busy intersections, allowing a more complete evaluation of the control performance, instead of just the collision avoidance at the intersection.  相似文献   

13.
Traffic movement conflict points at intersections are the points at which traffic movements intersect (including crossing, merging, and diverging). Numbers and distribution of different types of conflict points are used to evaluate intersection access management designs and safety performance. Traditionally, the determination of the numbers of conflict points for different traffic movements is based on manual methods, which causes the difficulty for computerized procedures to evaluate safety performance of different access management designs. Sometimes, a programmable calculation procedure may provide more effective solutions as compared with manual methods. This paper presents a programmable calculation procedure for the determination of the numbers of conflict points, which could be used as a basis for a computerized procedure. Concepts of virtual movement lanes and intersection quadrants are introduced to specify types of intersections, traffic lane configurations, and traffic movement regulations. Calculation models, based on such concepts, for traffic movement conflict points at signalized and unsignalized intersections can be obtained. In support of the procedure, case studies are presented in the paper. The procedure presented in the paper can be programmed into a computer program for the purpose of a computerized evaluation of intersection safety and design performance of different access management or control approaches. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Turning vehicle volumes at signalized intersections are critical inputs for various transportation studies such as level of service, signal timing, and traffic safety analysis. There are various types of detectors installed at signalized intersections for control and operation. These detectors have the potential of producing volume estimates. However, it is quite a challenge to use such detectors for conducting turning movement counts in shared lanes. The purpose of this paper was to provide three methods to estimate turning movement proportions in shared lanes. These methods are characterized as flow characteristics (FC), volume and queue (VQ) length, and network equilibrium (NE). FC and VQ methods are based on the geometry of an intersection and behavior of drivers. The NE method does not depend on these factors and is purely based on detector counts from the study intersection and the downstream intersection. These methods were tested using regression and genetic programming (GP). It was found that the hourly average error ranged between 4 and 27% using linear regression and 1 to 15% using GP. A general conclusion was that the proposed methods have the potential of being applied to locations where appropriate detectors are installed for obtaining the required data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The analysis, assessment and estimation of noise levels in the vicinity of intersections is a more complex problem than a similar analysis for roads and streets. This is due to the varied geometry of the intersections, differences in the loads of individual movements, participation of heavy vehicles and mass transport vehicles, as well as the various types of traffic management and traffic control. This article analyses the influence of intersection type and traffic characteristics on the noise levels in the vicinity of classic channelized intersections with signalization, roundabouts and signalized roundabouts. Based on the conducted measurements, it has been established that, with comparable traffic parameters and the same distance from the geometric centre of the intersection, the LAeq value for signalized roundabouts is 2.5–10.8 dB higher in comparison to classic channelized intersections with signalization and 3.3–6.7 dB higher in relations to the analysed roundabout. Additionally the differences between LAeq levels at individual entries at the same signalized roundabouts may reach the value of approximately 4.5 dB. Such situation is influenced by differences in the intersection geometry, diameter of the intersection’s central island, traffic flow type, traffic management at the entries and traffic volume, especially the amount and traffic movements of multiple axle heavy vehicles. These factors have been analysed in detail in relation to signalized roundabouts in this paper.  相似文献   

16.
文章提出了潜在冲突量的概念,并对其进行了分类,通过车速、交通量、车道宽度等易获取的交通参数来推算交叉口潜在冲突量,引入混合交通当量,将潜在冲突量与混合交通当量比值作为交叉口安全评价的指标,并结合桂林市的9个交叉口进行了安全程度的评价。  相似文献   

17.
Estimation of intersection turning movements is one of the key inputs required for a variety of transportation analysis, including intersection geometric design, signal timing design, traffic impact assessment, and transportation planning. Conventional approaches that use manual techniques for estimation of turning movements are insensitive to congestion. The drawbacks of the manual techniques can be amended by integrating a network traffic model with a computation procedure capable of estimating turning movements from a set of link traffic counts and intersection turning movement counts. This study proposes using the path flow estimator, originally used to estimate path flows (hence origin–destination flows), to derive not only complete link flows, but also turning movements for the whole road network given some counts at selected roads and intersections. Two case studies using actual traffic counts are used to demonstrate the proposed intersection turning movement estimation procedure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents an enhanced cell transmission model (CTM) to capture traffic operation at signalized intersections without explicit permissive left‐turn yielding rules (i.e. aggressive permissive left‐turn maneuvers may not necessarily yield to opposing through traffic), which can be widely observed in many developing countries. Different from previous studies that focus on traffic dynamics on approaching links, this study contributes to modeling traffic operations within the intersection. A novel cell transmission framework with various types of virtual cells is proposed to model the dynamics of traffic movements from approach to exit. The unique phenomenon of competitive occupying of the conflict point between the left turn and opposing through movements is modeled. The cell state indicating its blockage is proposed to capture the dynamic queue formulation and dissipation and to evaluate the operational traffic performance at the intersection. Field validation results show that the proposed model can capture the operation of traffic at signalized intersections without explicit permissive left‐turn yielding rules with significantly higher level of accuracy than traditional traffic flow models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The present study intended to (1) investigate the injury risk of pedestrian casualties involved in traffic crashes at signalized intersections in Hong Kong; (2) determine the effect of pedestrian volumes on the severity levels of pedestrian injuries; and (3) explore the role of spatial correlation in econometric crash‐severity models. The data from 1889 pedestrian‐related crashes at 318 signalized intersections between 2008 and 2012 were elaborately collected from the Traffic Accident Database System maintained by the Hong Kong Transport Department. To account for the cross‐intersection heterogeneity, a Bayesian hierarchical logit model with uncorrelated and spatially correlated random effects was developed. An intrinsic conditional autoregressive prior was specified for the spatial correlation term. Results revealed that (1) signalized intersections with greater pedestrian volumes generally exhibited a lower injury risk; (2) ignoring the spatial correlation potentially results in reduced model goodness‐of‐fit, an underestimation of variability and standard error of parameter estimates, as well as inconsistent, biased, and erroneous inference; (3) special attention should be paid to the following factors, which led to a significantly higher probability of pedestrians being killed or sustaining severe injury: pedestrian age greater than 65 years, casualties with head injuries, crashes that occurred on footpaths that were not obstructed/overcrowded, heedless or inattentive crossing, crashes on the two‐way carriageway, and those that occurred near tram or light‐rail transit stops. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
城市平面交叉口是城市交通冲突和事故频繁发生的地点。文章针对城市道路平面交叉口的交通安全现状,分析了平面交叉口的安全影响因素,提出引入事故率和冲突率为评价指标,建立了灰色理论评价方法,为城市道路平面交叉口的安全治理提供理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号