首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper introduces an empirically driven, non-parametric method to isolate and estimate the effects that changes in demand and changes in throughput have on delay – in particular, arrival and departure flight delay at airport runways. Classic queuing concepts were used to develop a method by which an intermediate, or counterfactual, queuing scenario could be constructed, to isolate the delay effects due to shifts in demand and throughput. This method includes the development of a stochastic throughput function that is based entirely on data and has three key features. Firstly, the function relies on non-parametric, empirically-based probability distributions of throughput counts. Secondly, facility capacity needs not be explicitly defined, as it is implicitly included in the probability distributions of throughput. Thirdly, the throughput performance function preserves the effect of factors that cause capacity (and, therefore, throughput) to fluctuate over a given period. Temporal sequences of high, moderate, and low capacity are maintained between the observed and counterfactual scenarios. The method was applied to a case study of the three major New York area airports of LaGuardia (LGA), Newark Liberty (EWR), and John F. Kennedy (JFK), using operational data extracted from the Federal Aviation Administration’s (FAA’s) Aviation System Performance Metrics (ASPM) database. The focus was on the peak summer travel seasons of 2006 and 2007, as these airports experienced record levels of delay in 2007. The results indicate that decreases in both demand and throughput were experienced at LGA and EWR, although the decreases in throughput had more significant effects on operational delays as they increased overall at these airports. At JFK, the increase in departure throughput was not sufficient to offset the increase in departure demands. For arrivals, demand increased and throughput decreased. These trends caused a significant growth in delay at JFK between 2006 and 2007.  相似文献   

2.
Abstract

This paper develops a heuristic algorithm for the allocation of airport runway capacity to minimise the cost of arrival and departure aircraft/flight delays. The algorithm is developed as a potential alternative to optimisation models based on linear and integer programming. The algorithm is based on heuristic (‘greedy’) criteria that closely reflect the ‘rules of thumb’ used by air traffic controllers. Using inputs such as arrival and departure demand, airport runway system capacity envelopes and cost of aircraft/flight delays, the main output minimises the cost of arrival and departure delays as well as the corresponding interdependent airport runway system arrival and departure capacity allocation. The algorithm is applied to traffic scenarios at three busy US airports. The results are used to validate the performance of the proposed heuristic algorithm against results from selected benchmarking optimisation models.  相似文献   

3.
Airport demand management aims to mitigate air traffic congestion by limiting the imbalances between demand and capacity at busy airports through administrative measures (e.g., slot controls) or economic incentives (e.g., congestion pricing, slot auctions). This paper provides an integrated synthesis of the contributions of the fields of operations research/management science (OR/MS) and economics on the subject matter. From an operating standpoint, assessing the benefits of demand management requires estimates of airport capacity and models of airport on-time performance. From a managerial standpoint, the design of demand management mechanisms can be supported by decision-making models of flight scheduling. From an economic standpoint, the welfare impact of congestion pricing, slot controls and slot auctions depends on the market structure at the airport. This paper proposes an integrated framework that underscores the interdependencies between these operating, managerial and economic aspects to foster cross-disciplinary approaches toward more effective demand management policies at busy airports worldwide.  相似文献   

4.
Abstract

Airport slot misuse disturbs the efficient and continuous operation of capacity-constrained airports, leading to congestion and delay problems. Deviations from the coordinated schedule in regional airport systems that feature seasonal demand and delays in certain peak periods are studied in this article. The Greek airport system is considered as a case study. Deviations are quantified by computing the difference between scheduled and actual aircraft arrival times as well as the hourly slot capacity utilization ratio. Two collective indicators for airport benchmarking are proposed. An in-depth analysis of slot allocation deviations and the delays they cause is carried out for a representative sample of airports that are classified according to the proposed indicators. A brief discussion on potential measures to mitigate slot misuse is also presented.  相似文献   

5.
The discrepancy between the projected demand for arrival slots at an airport and the projected available arrival slots on a given day is resolved by the Ground Delay Program (GDP). The current GDP rationing rule, Ration-by-Schedule, allocates the available arrival slots at the affected airport by scheduled arrival time of the flights with some adjustments to balance the equity between airlines. This rule does not take into account passenger flow and fuel flow performance in the rationing assignment tradeoff.This paper examines the trade-off between passenger delays and excess surface fuel burn as well as airline equity and passenger equity in GDP slot allocation using different rationing rules. A GDP Rationing Rule Simulator (GDP-RRS) is developed to calculate performance and equity metrics for all stakeholders using six alternate rules. The results show that there is a trade-off between GDP performance and GDP equity. Ration-by-Passengers (a rule which maximizes the passenger throughput) decreased total passenger delay by 22% and decreased total excess fuel burn by 57% with no change in total flight delay compared to the traditional Ration-by-Schedule. However, when the airline and passenger equity are primary concerns, the Ration-by-Schedule is preferred.  相似文献   

6.
It is well established that increased airline competition can produce benefits to passengers, and it is generally assumed that airport deregulation, as part of the same process of liberalisation, will produce similar benefits. But this paper shows that this may not be the case. The potential benefits to passengers from increased airline competition will in general be partially absorbed by increased airport charges at unregulated airports, and in some circumstances this may even result in increases in overall charges, not reductions. This problem is sometimes tackled by putting regulated price caps on aeronautical services, but if these are not extended to the complementary commercial services (such as retailing) which airports also provide then the adverse effects may still occur. Similarly, unilateral deregulation leading to increased airport competition in one country may just lead to the majority of the gains going abroad. Overall, the conclusion is that claims of big passenger gains from deregulation and competition may be exaggerated, and achieving these gains in reality may need subtle and quite far-reaching government intervention.  相似文献   

7.
The insufficiency of infrastructure capacity in an air transport system is usually blamed for poor punctuality performance when implementing flight schedules. However, investigations have revealed that ground operations of airlines have become the second major cause of flight delay at airports. A stochastic approach is used in this paper to model the operation of aircraft turnaround and the departure punctuality of a turnaround aircraft at an airport. The aircraft turnaround model is then used to investigate the punctuality problem of turnaround aircraft. Model results reveal that the departure punctuality of a turnaround aircraft is influenced by the length of scheduled turnaround time, the arrival punctuality of inbound aircraft as well as the operational efficiency of aircraft ground services. The aircraft turnaround model proposed is then employed to evaluate the endogenous schedule punctuality of two turnaround aircraft. Model results, when compared with observation data, show that the operational efficiency of aircraft ground services varies among turnarounds. Hence, it is recommended that the improvement of departure punctuality of turnaround aircraft may be achieved from two approaches: airline scheduling control and the management of operational efficiency of aircraft ground services.  相似文献   

8.
The aim of this paper is to investigate the influence of aircraft turnaround performance at airports on the schedule punctuality of aircraft rotations in a network of airports. A mathematical model is applied, composed of two sub-models, namely the aircraft turnaround model (turnaround simulations) and the enroute model (enroute flight time simulations). A Markovian type model is featured in the aircraft turnaround model to simulate the operation of aircraft turnarounds at an airport by considering operational uncertainties and schedule punctuality variance. In addition, stochastic Monte Carlo simulations are employed to carry out stochastic sampling and simulations in both the aircraft turnaround model and the enroute model. Results of simulations show the robustness of the aircraft rotation model in capturing uncertainties from aircraft rotations. The propagation of knock-on delays in aircraft rotations is found to be significant when the short-connection-time policy is used by an airline at its hub airport. It is also found that the proper inclusion of schedule buffer time in the aircraft rotation schedule helps control the propagation of knock-on delays and, therefore, stabilize the punctuality performance of aircraft rotations.  相似文献   

9.
With the growth of air traffic, airport surfaces are congested and air traffic operations are disrupted by the formation of bottlenecks on the surface. Hence, improving the efficiency and predictability of airport surface operations is not only a key goal of NASA’s initiatives in Integrated Arrival/Departure/Surface (IADS) operations, but also has been recognized as a critical aspect of the FAA NextGEN implementation plan. While a number of tactical initiatives have been shown to be effective in improving airport surface operations from a service provider’s perspective, their impacts on airlines’ scheduled block time (SBT) setting, which has been found to have direct impact on airlines’ on-time performance and operating cost, have received little attention. In this paper, we assess this impact using an econometric model of airline SBT combined with a before/after analysis of the implementation of surface congestion management (SCM) at John F. Kennedy International Airport (JFK) in 2010. Since airlines do not consider gate delay in setting SBT, we find that reduction in taxi-out time variability resulting from SCM leads to more predictable taxi-out times and thus decreases in SBT. The JFK SCM implementation is used as a case study to validate model prediction performance. The observed SBT decrease between 2009 and 2011 at JFK is 4.8 min and our model predicts a 4.2 min decrease. In addition, Charlotte Douglas International Airport (CLT) is used as an example to demonstrate how different surface operations improvements scenarios can be evaluated in terms of SBT reduction.  相似文献   

10.
Taxi service is an important component of airport ground access, which affects the economic competitiveness of an airport and its potential positive impact on the surrounding region. Airports across the globe experience both taxi shortages and excesses due to various factors such as the airport’s proximity to the city center, timing and frequency of flights, and the fare structure. Since taxi drivers are independent entities whose decisions affect the taxi supply at airports, it is important to understand taxi drivers’ decision mechanisms in order to suggest policies and to maintain taxi demand and supply equilibrium at the airports. In this paper, New York City (NYC) taxi drivers’ decisions about airport pick-ups or cruising for customers at the end of each trip is modeled using logistic regression based on a large taxi GPS dataset. The presented approach helps to quantify the potential impacts of parameters and to rank their influence for policy recommendations. The results reveal that spatial variables (mainly related to proximity) have the highest impact on taxi drivers’ airport pickup decisions, followed by temporal, environmental and driver-shift related variables. Along with supplementary information from unstructured taxi driver interviews, the model results are used to suggest policies for the improvement of John F. Kennedy (JFK) airport’s ground access and passenger satisfaction, i.e. the implementation of taxi driver frequent airport server punch cards and a time-specific ride share program.  相似文献   

11.
Efficient planning of Airport Acceptance Rates (AARs) is key for the overall efficiency of Traffic Management Initiatives such as Ground Delay Programs (GDPs). Yet, precisely estimating future flow rates is a challenge for traffic managers during daily operations as capacity depends on a number of factors/decisions with very dynamic and uncertain profiles. This paper presents a data-driven framework for AAR prediction and planning towards improved traffic flow management decision support. A unique feature of this framework is to account for operational interdependency aspects that exist in metroplex systems and affect throughput performance. Gaussian Process regression is used to create an airport capacity prediction model capable of translating weather and metroplex configuration forecasts into probabilistic arrival capacity forecasts for strategic time horizons. To process the capacity forecasts and assist the design of traffic flow management strategies, an optimization model for capacity allocation is developed. The proposed models are found to outperform currently used methods in predicting throughput performance at the New York airports. Moreover, when used to prescribe optimal AARs in GDPs, an overall delay reduction of up to 9.7% is achieved. The results also reveal that incorporating robustness in the design of the traffic flow management plan can contribute to decrease delay costs while increasing predictability.  相似文献   

12.
Managing service operations is gaining significant attention in both academic and practitioner circles. In this broad area, performance evaluation and process improvement of airlines and air carriers has been the focus of several studies. Although efficient airport operations are critical for improved performance of airlines and air carriers, few studies have focused on airport performance measurement. This study evaluates the operational efficiencies of 44 major US airports across 5 years using multi-criteria non-parametric models. These efficiency scores are treated by a clustering method in identifying benchmarks for improving poorly performing airports. Efficiency measures are based on four resource input measures including airport operational costs, number of airport employees, gates and runways, and five output measures including operational revenue, passenger flow, commercial and general aviation movement, and total cargo transportation. The methodology presented here can be generalized to other industries and institutions.  相似文献   

13.
This paper applies multi-criteria decision-making (MCDM) methods to the evaluation of solutions and alternatives for matching airport system airside (runway) capacity to demand. For such a purpose, ‘building a new runway’ is considered as the solution and candidate airports of the system as alternatives for implementing the solution. The alternative airports are characterized by their physical/spatial, operational, economic, environmental, and social performance represented by corresponding indicator systems which, after being defined and estimated under given operating scenarios, are used as evaluation attributes/criteria by the selected MCDM methods. Two MCDM methods – Simple Additive Weighting and Technique for Order of Preference by Similarity to Ideal Solution – are applied to the case of the London airport system to rank and select the preferred alternative from three candidate airports – Heathrow, Gatwick, and Stansted – for where a new runway could be built.  相似文献   

14.
On the relationship between airport pricing models   总被引:1,自引:0,他引:1  
Airport pricing papers can be divided into two approaches. In the traditional approach the demand for airport services depends on airport charges and on congestion costs of both passengers and airlines; the airline market is not formally modeled. In the vertical-structure approach instead, airports provide an input for an airline oligopoly and it is the equilibrium of this downstream market which determines the airports’ demand. We prove, analytically, that the traditional approach to airport pricing is valid if air carriers have no market power, i.e. airlines are atomistic or they behave as price takers (perfect competition) and have constant marginal operational costs. When carriers have market power, this approach may result in a surplus measure that falls short of giving a true measure of social surplus. Furthermore, its use prescribes a traffic level that is, for given capacity, smaller than the socially optimal level. When carriers have market power and consequently both airports and airlines behave strategically, a vertical-structure approach appears a more reasonable approach to airport pricing issues.  相似文献   

15.
This paper presents two stochastic programming models for the allocation of time slots over a network of airports. The proposed models address three key issues. First, they provide an optimization tool to allocate time slots, which takes several operational aspects and airline preferences into account; second, they execute the process on a network of airports; and third they explicitly include uncertainty. To the best of our knowledge, these are the first models for time slot allocation to consider both the stochastic nature of capacity reductions and the problem’s network structure. From a practical viewpoint, the proposed models provide important insights for the allocation of time slots. Specifically, they highlight the tradeoff between the schedule/request discrepancies, i.e., the time difference between allocated time slots and airline requests, and operational delays. Increasing schedule/request discrepancies enables a reduction in operational delays. Moreover, the models are computationally viable. A set of realistic test instances that consider the scheduling of four calendar days on different European airport networks has been solved within reasonable – for the application’s context – computation times. In one of our test instances, we were able to reduce the sum of schedule/request discrepancies and operational delays by up to 58%. This work provides slot coordinators with a valuable decision making tool, and it indicates that the proposed approach is very promising and may lead to relevant monetary savings for airlines and aircraft operators.  相似文献   

16.
When facing a growth in demand, airlines tend to respond more by means of increasing frequencies than by increasing aircraft size. At many of the world’s largest airports there are fewer than 100 passengers per air transport movement, although congestion and delays are growing. Furthermore, demand for air transport is predicted to continue growing but aircraft size is not. This paper aims to investigate and explain this phenomenon, the choice of relatively small aircraft. It seems that this choice is associated mainly with the benefits of high frequency service, the competitive environment in which airlines operate and the way airport capacity is allocated and priced. Regression analysis of over 500 routes in the US, Europe and Asia provides empirical evidence that the choice of aircraft size is mainly influenced by route characteristics (e.g. distance, level of demand and level of competition) and almost not at all by airport characteristics (e.g. number of runways and whether the airport is a hub or slot coordinated). We discuss the implications of this choice of aircraft size and suggest that some market imperfections exist in the airline industry leading airlines to offer excessive frequency on some routes and too low frequency on others.  相似文献   

17.
ABSTRACT

This paper evaluates the operational performance of airside and landside at Chinese airports with two novel inputs. Furthermore, the airport landside operation is decomposed into passenger-terminal operations and cargo-warehouse operations. One novel input is the capability of the runway system which is introduced into airside performance evaluation. The other novel input is cargo warehousing which is introduced into landside performance evaluation. To address multiple optimal solutions when estimating Returns to Scale in Data Envelopment Analysis, we adopted the Zhu and Shen method. This empirical study shows that neither the number of runways nor total runway length is a genuine index of runway system capability in the evaluation of airside performance. Only four airports achieved full efficiency in all eight measures while eight airports did not achieve any full efficiency. In addition, one airport did not perform well in the benchmark analysis.  相似文献   

18.
This paper analyses the efficiency of 44 US airports for the period 2005–2009. In addition to the conventional outputs (i.e., passengers, flights and cargo), we consider three undesirable externalities of airport activities: delays, noise and local air pollution. We adopt a directional distance function approach and perform a second stage analysis to investigate potential determinants of efficiency. Our base case results with only the positive outputs show that the greater the average aircraft size serving an airport and the larger the dimensions of the airport, the higher the technical efficiency. However, our results are sensitive to the inclusion of the undesirable outputs. The implications are that the inclusion of these externalities into the calculation of efficiency may impact policy decisions.  相似文献   

19.
Abstract

This paper presents an algorithm for assigning flight departure delays under probabilistic airport capacity. The algorithm dynamically adapts to weather forecasts by revising, if necessary, departure delays. The proposed algorithm leverages state-of-the-art optimization techniques that have appeared in recent literature. As a case study, the algorithm is applied to assigning departure delays to flights scheduled to arrive at San Francisco International Airport in the presence of uncertainty in the fog clearance time. The cumulative distribution function of fog clearance time was estimated from historical data. Using daily weather forecasts to update the probabilities of fog clearance times resulted in improvement of the algorithm's performance. Experimental results also indicate that if the proposed algorithm is applied to assign ground delays to flights inbound at San Francisco International airport, overall delays could be reduced up to 25% compared to current level.  相似文献   

20.
In this paper we use simulation to analyze how flight routing network structure may change in different world regions, and how this might impact future traffic growth and emissions. We compare models of the domestic Indian and US air transportation systems, representing developing and mature air transportation systems respectively. We explicitly model passenger and airline decision-making, capturing passenger demand effects and airline operational responses, including airline network change. The models are applied to simulate air transportation system growth for networks of 49 airports in each country from 2005 to 2050. In India, the percentage of connecting passengers simulated decreases significantly (from over 40% in 2005 to under 10% in 2050), indicating that a shift in network structure towards increased point-to-point routing can be expected. In contrast, very little network change is simulated for the US airport set modeled. The simulated impact of network change on system CO2 emissions is very small, although in the case of India it could enable a large increase in demand, and therefore a significant reduction in emissions per passenger (by nearly 25%). NOx emissions at major hub airports are also estimated, and could initially reduce relative to a case in which network change is not simulated (by nearly 25% in the case of Mumbai in 2025). This effect, however, is significantly reduced by 2050 because of frequency competition effects. We conclude that network effects are important when estimating CO2 emissions per passenger and local air quality effects at hub airports in developing air transportation systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号