首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Planning a set of train lines in a large-scale high speed rail (HSR) network is typically influenced by issues of longer travel distance, high transport demand, track capacity constraints, and a non-periodic timetable. In this paper, we describe an integrated hierarchical approach to determine line plans by defining the stations and trains according to two classes. Based on a bi-level programming model, heuristics are developed for two consecutive stages corresponding to each classification. The approach determines day-period based train line frequencies as well as a combination of various stopping patterns for a mix of fast trunk line services between major stations and a variety of slower body lines that offer service to intermediate stations, so as to satisfy the predicted passenger transport demand. Efficiencies of the line plans described herein concern passenger travel times, train capacity occupancy, and the number of transfers. Moreover, our heuristics allow for combining many additional conflicting demand–supply factors to design a line plan with predominantly cost-oriented and/or customer-oriented objectives. A range of scenarios are developed to generate three line plans for a real-world example of the HSR network in China using a decision support system. The performance of potential train schedules is evaluated to further examine the feasibility of the obtained line plans through graphical timetables.  相似文献   

2.
We propose a new type of timetable that would combine both the regularity of the cyclic timetables and the flexibility of the non-cyclic ones. In order to do so, several combinations of the two timetables are considered. The regularity is incorporated in their design and the flexibility is evaluated using the passenger satisfaction (in monetary units). Each of the tested timetables is constructed using the Passenger Centric Train Timetabling Problem (PCTTP), that is solved using a simulated annealing heuristic. Note that the PCTTP, unlike the traditional Train Timetabling Problem (TTP), does not take into account the conflicts among trains. The aim of the PCTTP is to design such timetables that the passengers’ satisfaction is maximized and it remains the aim of the TTP to remove any potential conflicts. The performance of each of the considered timetables is assessed on the real network of Israeli Railways. The results of the case study show that our proposed hybrid cyclic timetable can provide the benefits of the cyclic and the non-cyclic timetable simultaneously. This timetable consists of 75% of cyclic trains (securing the regularity of the service) and of 25% of non-cyclic trains (deployed as supplementary trains during the peak hours and capturing the demand fluctuation). The level of the passenger satisfaction of the hybrid cyclic timetable is similar to the level of the non-cyclic one, which has about 18.5% of improvement as compared to the purely cyclic one.  相似文献   

3.
It is sometimes argued that standard state-of-practice logit-based models cannot forecast the demand for substantially reduced travel times, for instance due to High Speed Rail (HSR). The present paper investigates this issue by reviewing the literature on travel time elasticities for long distance rail travel and comparing these with elasticities observed when new HSR lines have opened. This paper also validates the Swedish long distance model, Sampers, and its forecast demand for a proposed new HSR, using aggregate data revealing how the air–rail modal split varies with the difference in generalized travel time between rail and air. The Sampers long distance model is also compared to a newly developed model applying Box–Cox transformations. The paper contributes to the empirical literature on long distance travel, long distance elasticities and HSR passenger demand forecasts. Results indicate that the Sampers model is indeed able to predict the demand for HSR reasonably well. The new non-linear model has even better model fit and also slightly higher elasticities.  相似文献   

4.
In passenger railway operations, unforeseen events require railway operators to adjust their timetable and their resource schedules. The passengers will also adapt their routes to their destinations. When determining the new timetable and rolling stock schedule, the railway operator has to take passenger behavior into account. The operator should increase the capacity of trains for which the operator expects more demand than on a regular day. Furthermore, the operator could increase the frequency of the trains that serve stations with an additional demand.This paper describes a real-time disruption management approach which integrates the rescheduling of the rolling stock and the timetable by taking the changed passenger demand into account. The timetable decisions are limited to additional stops of trains at stations at which they normally would not call. Several variants of the approach are suggested, with the difference in how to determine which additional stops should be executed.Real-time rescheduling requires fast solutions. Therefore a heuristic approach is used. We demonstrate the performance of the several variants of our algorithm on realistic instances of Netherlands Railways, the major railway operator in the Netherlands.  相似文献   

5.
This paper provides alternative methods for constructing bus timetables using passenger load data. It attempts to fulfill six major objectives: to evaluate alternative timetables in terms of required resources; to improve the correspondence of bus departure times with passenger demand; to provide alternative timetables for the schedulers' use in specific scheduling situations; to permit direct bus frequency changes for possible exceptions (known to the schedulers) which do not rely on passenger demand data; to allow the construction of timetables with headway smoothing techniques (similar to that performed manually); and to integrate different headway setting and different timetable construction methods. The procedures developed set the bus departure times for the case of evenly spaced headways and for the case of allowing the headways to be unevenly spaced. In the first case, smoothing techniques are developed in the transition segments between adjacent time periods. In the second case, the departure times are shifted so as to obtain uniform average loads instead of even headways. The final product of the research consists of a set of computer programs which are tested on a heavy bus line in Los Angeles.  相似文献   

6.
Timetable design is crucial to the metro service reliability. A straightforward and commonly adopted strategy in daily operation is a peak/off-peak-based schedule. However, such a strategy may fail to meet dynamic temporal passenger demand, resulting in long passenger waiting time at platforms and over-crowding in trains. Thanks to the emergence of smart card-based automated fare collection systems, we can now better quantify spatial–temporal demand on a microscopic level. In this paper, we formulate three optimization models to design demand-sensitive timetables by demonstrating train operation using equivalent time (interval). The first model aims at making the timetable more dynamic; the second model is an extension allowing for capacity constraints. The third model aims at designing a capacitated demand-sensitive peak/off-peak timetable. We assessed the performance of these three models and conducted sensitivity analyzes on different parameters on a metro line in Singapore, finding that dynamical timetable built with capacity constraints is most advantageous. Finally, we conclude our study and discuss the implications of the three models: the capacitated model provides a timetable which shows best performance under fixed capacity constraints, while the uncapacitated model may offer optimal temporal train configuration. Although we imposed capacity constraints when designing the optimal peak/off-peak timetable, its performance is not as good as models with dynamical headways. However, it shows advantages such as being easier to operate and more understandable to the passengers.  相似文献   

7.
This paper proposes a mathematical model for the train routing and timetabling problem that allows a train to occasionally switch to the opposite track when it is not occupied, which we define it as switchable scheduling rule. The layouts of stations are taken into account in the proposed mathematical model to avoid head-on and rear-end collisions in stations. In this paper, train timetable could be scheduled by three different scheduling rules, i.e., no switchable scheduling rule (No-SSR) which allows trains switching track neither at stations and segments, incomplete switchable scheduling rule (In-SSR) which allows trains switching track at stations but not at segments, and complete switchable scheduling rule (Co-SSR) which allows trains switching track both at stations and segments. Numerical experiments are carried out on a small-scale railway corridor and a large-scale railway corridor based on Beijing–Shanghai high-speed railway (HSR) corridor respectively. The results of case studies indicate that Co-SSR outperforms the other two scheduling rules. It is also found that the proposed model can improve train operational efficiency.  相似文献   

8.
A new approach for improving the performance of freight train timetabling for single-track railways is proposed. Using the idea of a fixed-block signaling system, we develop a matrix representation to express the occupation of inter- and intra-station tracks by trains illustrating the train blocking time diagram in its entirety. Train departure times, dwell times, and unnecessary stopping are adjusted to reduce average train travel time and single train travel time. Conflicts between successive stations and within stations are identified and solved. A fuzzy logic system is further used to adjust the range of train departure times and checks are made to determine whether dwell times and time intervals can be adjusted for passenger and freight trains at congested stations to minimize train waiting times. By combining manual scheduling expertise with the fuzzy inference method, timetable efficiency is significantly improved and becomes more flexible.  相似文献   

9.
The railway systems in various European countries adopt regular timetables, in which the trains arrive and depart at constant intervals. In fact, their simple structure provides several advantages both to the passengers and to the management of the service. The design of such timetables has recently received a certain attention in the literature, but the standard model aims to optimize the service for a fixed demand. We relax this unrealistic assumption, taking into account the reciprocal influence between the quality of the timetable and the amount of transport demand captured by the railway. This results into a mixed-integer non linear model with a non-convex continuous relaxation. We solve it by a branch-and-bound algorithm based on a piecewise-linear overestimate of the objective function and a heuristic algorithm which iteratively applies the standard fixed-demand model and a demand-estimation model, feeding each one with data based on the solution obtained from the other one at the previous iteration. The computational results presented concern both random instances and a real-world regional network located in Northwestern Italy.  相似文献   

10.
This work is originally motived by the re-planning of a bus network timetable. The existing timetable with even headways for the network is generated using line by line timetabling approach without considering the interactions between lines. Decision-makers (i.e., schedulers) intend to synchronize vehicle timetable of lines at transfer nodes to facilitate passenger transfers while being concerned with the impacts of re-designed timetable on the regularity of existing timetable and the accustomed trip plans of passengers. Regarding this situation, we investigate a multi-objective re-synchronizing of bus timetable (MSBT) problem, which is characterized by headway-sensitive passenger demand, uneven headways, service regularity, flexible synchronization and involvement of existing bus timetable. A multi-objective optimization model for the MSBT is proposed to make a trade-off between the total number of passengers benefited by smooth transfers and the maximal deviation from the departure times of the existing timetable. By clarifying the mathematical properties and solution space of the model, we prove that the MSBT problem is NP-hard, and its Pareto-optimal front is non-convex. Therefore, we design a non-dominated sorting genetic (NSGA-II) based algorithm to solve this problem. Numerical experiments show that the designed algorithm, compared with enumeration method, can generate high-quality Pareto solutions within reasonable times. We also find that the timetable allowing larger flexibility of headways can obtain more and better Pareto-optimal solutions, which can provide decision-makers more choice.  相似文献   

11.
High-speed railway (HSR) systems have been developing rapidly in China and various other countries throughout the past decade; as a result, the question of how to efficiently operate such large-scale systems is posing a new challenge to the railway industry. A high-quality train timetable should take full advantage of the system’s capacity to meet transportation demands. This paper presents a mathematical model for optimizing a train timetable for an HSR system. We propose an innovative methodology using a column-generation-based heuristic algorithm to simultaneously account for both passenger service demands and train scheduling. First, we transform a mathematical model into a simple linear programming problem using a Lagrangian relaxation method. Second, we search for the optimal solution by updating the restricted master problem (RMP) and the sub-problems in an iterative process using the column-generation-based algorithm. Finally, we consider the Beijing–Shanghai HSR line as a real-world application of the methodology; the results show that the optimization model and algorithm can improve the defined profit function by approximately 30% and increase the line capacity by approximately 27%. This methodology has the potential to improve the service level and capacity of HSR lines with no additional high-cost capital investment (e.g., the addition of new tracks, bridges and tunnels on the mainline and/or at stations).  相似文献   

12.
This paper reviews and compares the performance of two dynamic transportation models – METROPOLIS and SILVESTER – which are used to predict the impacts of congestion charging for Stockholm. Both are mesoscopic dynamic models treating accumulation and dissipation of traffic queues, route choice, modal split and departure time choice. The models are calibrated independently for the baseline situation without charges and applied to forecast the effects of congestion charging. The results obtained from the two models are mutually compared and validated against the actual outcome of the Stockholm congestion charging scheme. Both models successfully predict the outcomes of the congestion charging trial at both aggregate and disaggregate levels. Results of welfare analysis, however, differ substantially due to differences in model specification.  相似文献   

13.
The train operational plan (TOP) plays a crucial role in the efficient and effective operation of an urban rail system. We optimize the train operational plan in a special network layout, an urban rail corridor with one terminal yard, by decomposing it into two sub-problems, i.e., the train departure profile optimization and the rolling stock circulation optimization. The first sub-problem synthetically optimizes frequency setting, timetabling and the rolling stock circulation at the terminal without a yard. The maximum headway function is generated to ensure the service of the train operational plan without considering travel demand, then we present a model to minimize the number of train trips, and design a heuristic algorithm to maximize the train headway. On the basis of a given timetable, the rolling stock circulation optimization only involves the terminal with a yard. We propose a model to minimize the number of trains and yard–station runs, and an algorithm to find the optimal assignment of train-trip pair connections is designed. The computational complexities of the two algorithms are both linear. Finally, a real case study shows that the train operational plan developed by our approach enables a better match of train headway and travel demand, and reduces the operational cost while satisfying the requirement of the level of service.  相似文献   

14.
Short-term forecasting of high-speed rail (HSR) passenger flow provides daily ridership estimates that account for day-to-day demand variations in the near future (e.g., next week, next month). It is one of the most critical tasks in high-speed passenger rail planning, operational decision-making and dynamic operation adjustment. An accurate short-term HSR demand prediction provides a basis for effective rail revenue management. In this paper, a hybrid short-term demand forecasting approach is developed by combining the ensemble empirical mode decomposition (EEMD) and grey support vector machine (GSVM) models. There are three steps in this hybrid forecasting approach: (i) decompose short-term passenger flow data with noises into a number of intrinsic mode functions (IMFs) and a trend term; (ii) predict each IMF using GSVM calibrated by the particle swarm optimization (PSO); (iii) reconstruct the refined IMF components to produce the final predicted daily HSR passenger flow, where the PSO is also applied to achieve the optimal refactoring combination. This innovative hybrid approach is demonstrated with three typical origin–destination pairs along the Wuhan-Guangzhou HSR in China. Mean absolute percentage errors of the EEMD-GSVM predictions using testing sets are 6.7%, 5.1% and 6.5%, respectively, which are much lower than those of two existing forecasting approaches (support vector machine and autoregressive integrated moving average). Application results indicate that the proposed hybrid forecasting approach performs well in terms of prediction accuracy and is especially suitable for short-term HSR passenger flow forecasting.  相似文献   

15.
ABSTRACT

To date, relatively little is known about the nature of the demand for high-speed rail (HSR) soon after inauguration of the services, despite close to 50-year experience of HSR operation and 17 166?km of HSR network around the world. This is a real lacuna given the scale of HSR construction around the world, the amount of resources committed to it, the desired accessibility, economic and environmental effects associated with HSR development and the relatively poor track record of forecasting demand for HSR services. Focusing on mode substitution and induced demand effects, this review aims to fill the gap in knowledge about the ex-post demand for HSR services in order to facilitate a learning process for the planning of the future HSR network. Although there is not much evidence on the demand for HSR services and existing evidence is largely influenced by route-specific characteristics, a methodological limitation that must be acknowledged, the evidence presented allows a better characterisation of HSR as a mode of transport. The review shows that the demand for HSR a few years after inauguration is about 10–20% induced demand and the rest is attributed to mode substitution. In terms of mode substitution, in most cases the majority of HSR passengers have used the conventional rail before. Substitution from aircraft, car and coach is generally more modest.  相似文献   

16.
This paper develops a new procedure for the problem of multimodal urban corridor travel demand estimation by using the Analytic Hierarchy Process (AHP). Certain conceptual and operational features of the AHP are common to the discrete choice theory-based modeling approach. Whereas the computational and data requirements of standard discrete choice models are immense, the proposed AHP approach deals efficiently with multidimensionality, nested demand structure and discrete travel decision making behavior. The paper concludes by summarizing the AHP-aided, step-by-step procedure for metropolitan travel demand (modal split) estimation.  相似文献   

17.
To improve the service quality of the railway system (e.g., punctuality and travel times) and to enhance the robust timetabling methods further, this paper proposes an integrated two-stage approach to consider the recovery-to-optimality robustness into the optimized timetable design without predefined structure information (defined as flexible structure) such as initial departure times, overtaking stations, train order and buffer time. The first-stage timetabling model performs an iterative adjustment of all departure and arrival times to generate an optimal timetable with balanced efficiency and recovery-to-optimality robustness. The second-stage dispatching model evaluates the recovery-to-optimality robustness by simulating how each timetable generated from the first-stage could recover under a set of restricted scenarios of disturbances using the proposed dispatching algorithm. The concept of recovery-to-optimality is examined carefully for each timetable by selecting a set of optimally refined dispatching schedules with minimum recovery cost under each scenario of disturbance. The robustness evaluation process enables an updating of the timetable by using the generated dispatching schedules. Case studies were conducted in a railway corridor as a special case of a simple railway network to verify the effectiveness of the proposed approach. The results show that the proposed approach can effectively attain a good trade-off between the timetable efficiency and obtainable robustness for practical applications.  相似文献   

18.
This paper reviews the empirical evidence relating to the impact of parking policy measures on the demand for parking and for travel. Disaggregate modal choice models, disaggregate parking location models and site‐specific studies of parking behaviour are examined. With regard to modal choice models, it is concluded that few studies deal adequately with parking factors, but that there is some support for the view that parking policy measures are a relatively important influence on modal choice. When parking location models are examined parking policy variables are shown to have a substantial impact on choice of parking location. With regard to site‐specific studies, the paper concludes that there is a great variation in the parking price elasticities quoted, which reflects partly the methodological problems associated with such studies. Suggestions to improve model specification are made.  相似文献   

19.
In order to reduce energy use and cut emissions that contribute to climate change, countries need to radically reinvent their fossil-fuel intensive transportation systems. As a major consumer of energy and contributor to greenhouse gas (GHG) emissions, the U.S. transportation sector faces extraordinary challenges in the twenty-first century. Transportation in the U.S. depends heavily on fossil-fuel dependent cars and planes to the near exclusion of more energy-efficient electric trains. In order to address this concern, some policy makers refer to “technological optimism” which seeks no systemic change but instead focuses on employing technology to reduce the energy demand and environmental impact of the status quo. On the other hand, some researchers suggest a systematic paradigm shift away from cars and planes to intermodal systems that improve the sustainability of the system as a whole. High-speed rail (HSR) is arguably such an investment that can further this shift and help to achieve a more diversified and balanced transportation system. In this respect, by largely examining the role of the U.S. cars and planes “culture” in the economy, this paper elaborates on how building a HSR system may help U.S. advance towards environmental sustainability in transportation, make a break from the status quo, and create a more balanced, multimodal transportation system that will improve the quality and efficiency of travel.  相似文献   

20.
In this paper we examine the transit network design problem under the assumption of elastic demand, focusing on the problem of designing the frequencies of a regional metro. In this problem, investments in transit services have appreciable effects on modal split. Neglecting demand elasticity can lead to solutions that may not represent the actual objectives of the design. We propose four different objective functions that can be adopted to assume demand as elastic, considering the costs of all transportation systems (car, bus and rail) as well as the external costs, and we define the constraints of the problem. Heuristic and meta-heuristic solution algorithms are also proposed. The models and algorithms are tested on a small network and on a real-scale network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号