首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
运用有限元程序MSC.Dytran数值计算水下爆炸载荷作用下连续玄武岩纤维复合材料船体舱段结构的响应,采用层合板模型模拟纤维复合材料,选取一般耦合算法计算流体与结构的耦合效应,并将计算结果与E玻璃纤维复合材料船体仿真结果进行比较,分析2种材料船体结构压力时历曲线、破坏起始位置及破坏形式,得出结论:玄武岩纤维复合材料和E玻璃纤维复合材料船体底板在爆炸载荷的作用下起始破坏形式不同,玄武岩纤维的压缩强度和拉伸强度之比较高,在实际设计制造中更有优势。在船舶建造中可以使用连续玄武岩纤维复合材料替代玻璃纤维复合材料。  相似文献   

2.
玄武岩纤维复合材料层合加筋板轴向动力压缩破坏分析   总被引:1,自引:0,他引:1  
基于通用有限元软件,结合复合材料失效准则对玄武岩纤维复合材料层合加筋板在轴向动力压缩载荷作用下的破坏问题进行了研究,并比较了玄武岩纤维复合材料层与S-2玻璃纤维增强复合材料帽形层合加筋板轴向动力压缩破坏的差异.研究结果表明,玄武岩纤维复合材料层合加筋板具备与S-2玻璃纤维复合材料层合加筋板相当的轴向压缩性能.本研究可以为选用玄武岩纤维作为高速舰船船体材料提供参考依据.  相似文献   

3.
运用有限元程序MSC.Dytran模拟水下爆炸气泡脉动现象的整个过程,计算输出气泡中心位置压力时历曲线与爆炸理论吻合;采用层合板模型模拟连续玄武岩纤维复合材料,选取一般耦合算法计算流体与结构的耦合效应,计算连续玄武岩纤维复合材料舱段在脉动载荷作用下的动力响应;分析连续玄武岩纤维复合材料船体结构位移时历曲线、应力时历曲线及船底板应力云图.研究结果表明,在近场爆炸情况下,第一次脉动产生的应力波有可能比爆炸冲击波对船体造成更大的破坏;爆炸产生的脉动载荷频率接近整船或局部构件固有频率时,引发共振,对船体造成爆炸冲击破坏外的附加损害.  相似文献   

4.
水面舰船抗水下爆炸的性能是舰船生命力的重要方面,深受各国海军重视.以某型水面舰船为研究对象,基于夹层板进行舷侧结构设计;选取典型工况,采用三舱段模型技术,使用MSC.Dytran对夹层板舷侧结构在水下爆炸冲击波载荷作用下的动态响应进行仿真计算.比较分析了流-固耦合力、结构变形、速度、加速度、吸能等重要力学性能.结果表明夹层板应用于舰船舷侧结构使得结构的变形、位移减小,结构塑性吸能增加,显著改善了结构的冲击环境.夹层板是一种防护性能优良的结构形式,吸能效率较高,还减小了冲击波压力及冲量的吸收及传递,对减小舰船其它部位结构的损伤防护起到重要作用.  相似文献   

5.
非接触爆炸下纵向箱型梁舰船的极限承载能力研究   总被引:1,自引:0,他引:1  
以德国F124护卫舰纵向箱型梁甲板结构型式的舱段为研究对象,采用流固耦合方法计算其在空爆作用下的甲板变形。采用阻尼因子法,对各冲击因子下箱型梁和普通甲板结构型式舱段塑性变形后的极限承载能力进行比较分析。研究结果表明:在遭受非接触爆炸冲击后,箱型梁甲板结构型式与普通甲板结构型式相比,具有变形小、变形后舰体极限承载能力下降低等优势,因而能够显著提高舰船生命力。  相似文献   

6.
针对2种不同强力甲板结构形式的舰船,应用ABAQUS非线性有限元分析工具,计算舰体在强力甲板大变形损伤状态下的总纵极限承载能力.采用冲击动载荷来模拟得到结构的大变形损伤状态,并将其作为初始状态进行极限承载能力分析.分析结果表明,纵向箱形梁这种新型强力甲板结构形式相比常规强力甲板结构形式,在大变形损伤下舰体总纵极限承载能力等方面具有显著的优越性.  相似文献   

7.
多层防护结构舱内爆炸试验   总被引:2,自引:0,他引:2  
舰船舷侧多层防护结构的主要作用是抵御反舰武器对内部结构的破坏。文章通过反舰武器战斗部模型在舰船舷侧防护结构内部爆炸的模拟试验,研究了战斗部内爆作用下防护结构的破坏模式、多层防护结构防御冲击波和高速破片的效果以及内部结构的冲击响应,对比分析了空舱和水舱在战斗部接近爆炸作用下的变形和破坏情况。通过对试验数据的分析发现在战斗部接近爆炸载荷作用下,水舱内板的动态响应出现了"二次加载"现象。  相似文献   

8.
采用预制缺口的舰体结构试样,对舰用907A钢在拉伸疲劳载荷作用下的裂纹扩展规律进行了高频疲劳试验研究,得出在拉伸疲劳载荷作用下舰体结构的裂纹扩展规律,模拟了舰船在航行时波浪交变载荷对舰船结构的破坏作用,试验结果对预报破损舰船在波浪中航行时的裂纹扩展情况具有参考作用。  相似文献   

9.
基于夹层板抗水下爆炸舰船底部结构设计   总被引:8,自引:6,他引:2  
水面舰船抗水下爆炸的性能是舰船生命力的重要方面,一直受到各国海军的重视;金属基夹层板在航空航天、汽车等轻型交通运输系统中得到广泛应用。本文以某型水面舰船为研究,设计出夹层板舰船底部结构,采用三舱段模型技术,利用MSC.Dytran仿真分析结构在典型工况水下爆炸冲击波载荷作用下的动态响应,比较分析流-固耦合力、结构变形、速度、加速度、吸能等。结果表明,夹层板应用于舰船底部结构减小了结构位移,增加了结构的吸能,显著改善了结构的冲击环境,夹层板舰船底部结构具有优良的防护性能;夹芯层在结构抵抗水下爆炸冲击波载荷过程中起到重要作用。  相似文献   

10.
为选择与优化舰船复合材料防护结构,根据陶瓷材料的密度小、强度大、硬度高、抗冲击性能良好等特征,建立以金属为面板的金属/陶瓷复合材料和以陶瓷为面板的陶瓷/金属复合材料结构模型,研究复合材料层合板在爆炸冲击载荷下的抗冲击性能,陶瓷/金属复合材料的抗爆炸冲击性能远远优于金属/陶瓷复合材料的抗爆炸冲击性能。在此基础上,考虑复合材料层合板在防护结构中的位置,讨论不同结构参数对防护结构爆炸冲击性能的影响。研究结果表明,当复合材料层合板设置在空舱外板时,舰船的抗爆炸冲击性能相对较优。  相似文献   

11.
为研究某舰尾部上层建筑副炮加强结构的垂向刚度,在有限元软件ANSYS中分别建立副炮基座附近的上层建筑模型、上层建筑带部分主船体舱段模型以及全舱段模型并进行了刚度计算分析。在计算过程中,通过多种结构设计方案的对比计算,分析出了对结构整体刚度影响较大的船体构件和部位,为最终的结构加强提供了依据。着重讨论了模型范围大小、不同边界条件、加载方式以及刚度计算方法对船体结构最终垂向刚度计算结果的影响。  相似文献   

12.
分析了水面舰艇典型舱段在水下爆炸载荷下的动力响应。用ANSYS建立了典型舱段的四分之一模型,用LS-DYNA计算观察了结构的应力云图以及典型单元处的应力随时间的变化。分别设置船体结构材料为正交各向异性的复合材料和钢材料,且使两种情况下船体分段的重量相当,比较了不同材料船体相同位置的应力大小。改变炸药量的大小,计算水中不同距离处的冲击波峰值压力,并与由经验公式计算的结果作了比较。  相似文献   

13.
简要回顾了陶瓷/金属复合靶板的研究现状.根据船用钢的吸能特点和船用陶瓷轻型复合装甲的特殊性,将10 g破片模拟弹侵彻陶瓷/船用钢的过程分为两个阶段,分别计算了破片模拟弹的侵蚀变形能和船用钢背板的隆起-碟型变形吸能,并将后者分为径向弯曲变形能、径向膜托伸变形能及周向弯曲变形能等,给出了各种能量的计算公式,建立了计算弹道极...  相似文献   

14.
船舶直流组网电力推进技术发展优势   总被引:1,自引:1,他引:0  
通过对国内外多型试验船舶建设方案编制论证、参与设计、全程监造并总结多年实际用船经验,分析了几种船型推进系统的优缺点,同时归纳船舶直流组网技术优势与发展潜力,找到国内外在该领域技术差距,为我国未来试验船研制提供参考.  相似文献   

15.
多学科设计优化(MDO)是解决复杂系统工程问题的有效手段。通过对大型舰艇多学科设计优化船体结构子系统设计方法进行研究,将船体结构设计分为船体横剖面结构布置方案自动生成、船体横剖面结构方案优选、船体结构重量估算3个步骤;根据总体方案提供的主尺度、横剖面外形轮廓和分层分舱等信息,依据骨材(桁材)均匀布置和余量控制的原则,生成船体横剖面结构布置方案,并提出一套参考母型船设计,确定设计船构件尺寸初值的方法;在船体横剖面结构方案优选过程中,采用调用代理模型代替板架有限元仿真模型的方法来减少结构分析的计算时间,并采用组合法获得重量最轻的设计方案。  相似文献   

16.
在船舶纵弯曲强度的可靠性分析中,需要计算船体梁的抗弯能力,本文提供一种实用计算方法。在此方法中取材料厚度(或剖面积)和屈服限、弹性模量等均为随机变量,利用随机函数的线性化原理,求得船体断面几何要素以及抗弯能力的统计特征值。文中还介绍了国产船用钢材的厚度和屈服极限的变异系数,并利用组合梁模型试验资料对采用梁模型带来的计算误差及其修正办法作了讨论。该计算方法采用了造船人员熟悉的常规强度计算中的格式,便于在船舶设计中应用。  相似文献   

17.
尹群  谢祚水 《船舶工程》1997,(5):11-13,23
本文研究了舰船相贯结构切口区的力学性能,应用先进的有限元分析系统,采用分步计算方法,详细分析了位于舰船船体不同部位,不同切口形状、不同切口尺寸不同切口角隅形状、不同通焊孔形式等情况下的应力分布规律,计算了相应的和集中系数,提出了多种加强方案,获得了相应的加强效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号