首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
交通流预测控制的机制与方法   总被引:6,自引:2,他引:6  
应用预测控制的机理,提出基于可校正交通流预测模型和两级遗传算法以实现交通分配和交通控制相结合的交通流系统计算机控制方法。基于伪给定、预测模型、滚动优化和反馈调节的交通流预测控制系统能够实现有性能保障的交通流系统控制,为交通拥堵预防和拥堵恢复畅通提供全局性的分析和决策支持。该系统通过综合集成应用现代信息处理技术、优化技术、专家系统、交通流及交通控制理论,为交通分配和交通控制的结合提供了工程实现途径。  相似文献   

2.
比较分析神经网络和粗糙集在数据处理过程中的各自优缺点,提出一种基于二者强耦合集成方式的短时交通流预测模型。首先利用粗集对获取的交通流数据进行预处理,简化神经网络训练样本数据集并通过粗集属性约简提取决策规则;其次,利用所提取的规则直接确定神经网络的隐层数、隐层节点数及节点的相互关系;最后训练神经网络用于短时交通流预测。通过与单纯利用神经网络预测的结果进行比较,发现该模型降低了网络训练时间,提高了预测精度。  相似文献   

3.
基于神经网络实现交叉口多相位模糊控制   总被引:3,自引:5,他引:3  
根据城市交叉口交通流的特点,给出了一种交叉口多相位自适应控制算法,综合考虑相邻车道上的车队长度,利用多层BP神经网络实现了道路交叉口多相位模糊控制。仿真结果表明,所设计的模糊神经网络控制器能有效地减少单交叉口平均车辆延误,具有较强的学习和泛化能力。  相似文献   

4.
信号交叉口排队长度预测的神经网络方法   总被引:2,自引:1,他引:2  
郭秀文 《中南公路工程》2004,29(3):72-75,80
预测信号交叉口的排队长度可以为交通信号控制和管理提供非常重要的信息。基于神经网络,针对定时和感应信号交叉口两种不同情况,成功实现了单、双车道排队长度的预测。同时,感应器与停车线之间的距离对预测精度的影响也进行了初步分析。模拟结果同时表明,神经网络对左转车道排队长度的预测效果不佳,不能为信号控制和管理提供有效的信息。  相似文献   

5.
针对平面交叉口四方向进口的交通流量具有时空相关性的特点,提出了一种基于长短期记忆LSTM(Long Short-Term Memory)网络的平面交叉口短时交通流预测模型。将以四方向进口历史交通流数据为基础的四维时间序列数据输入LSTM模型中进行训练,并使用OpenITS合肥示范区数据对提出的模型进行验证。结果表明,与传统的BP神经网络相比,该方法预测效果具有更好的表现,是一种预测精度高的预测方法。  相似文献   

6.
信息技术的快速发展,为交通研究和城市交通管理提供了大规模、多样化的数据资源,并为城市交通状态估计和交通流预测方法的研究提供了有力支持.将城市交叉口视为一个微观交通系统,采用数据驱动与领域知识结合的方式,建立微观层次的交通因子状态网络模型(Traffic Factor State Network,TFSN),考察交通因素...  相似文献   

7.
为通过视觉图形实现交通流时序特征可视化,精准掌握交通大数据驱动下交叉口交通主体的移动趋势,构建交叉口短时交通流可视化预测系统。通过Python中的Matplotlib实现交叉口交通流时序可视化,利用ARIMA模型进行短时交通流预测,并以OpenITS合肥市示范区黄山路-科学大道交叉口数据进行实例验证。结果表明,该系统可实时、在线实现不同时段交通流分布规律可视化,并能有效提取交通流时序特征,ARIMA(1,1,0)模型的3个评价指标的预测误差均小于10%,具有较高的预测精度。  相似文献   

8.
为提高我国城市道路交叉口混合交通流智能信号控制的效率,提出一种基于高维多目标进化算法的交叉口混合交通流信号智能优化控制方法.首先,提出一种新的高维多目标进化算法GRMODE,设计了新的算法模型并改进了Pareto支配排序等多项关键技术;其次,设计了基于GRMODE算法的交叉口混合交通流高维多目标信号优化控制模型,提供5项控制目标最优的信号控制方案.在南京市交叉口信号控制中的仿真实验结果表明,基于GRMODE算法的控制模型能够使交叉口机动车平均延误、停车次数、通行能力、非机动车平均延误及行人等待时间等多项性能指标同时达到最优,提升交叉口智能信号控制效率.  相似文献   

9.
由于交通流预测具有高度的非线性特点,这与BP神经网络能够处理非线性问题的特征相符合。但BP神经网络算法易使解陷入局部极小,而遗传算法的全局优化能力则恰恰可以克服这一缺点。文中将遗传算法应用于对BP神经网络模型的改进来对交通流进行预测。通过对预测数据与实测数据的比较分析,证实了改进后的方法更为有效。  相似文献   

10.
以高速公路交通流预测为研究对象,建立了基于BP神经网络的参数动态修复交通流预测模型。以高速公路宏观动态交通流模型为原型,利用分段辨识法分析了高速公路交通流特性。对BP神经网络层数和神经元的确定,以及转移函数的优化选择进行了深入研究,并给出了基于BP神经网络交通流预测模型的建模方法。对西宝(西安-宝鸡)高速公路交通流实时数据进行了采集、建模和仿真。通过仿真结果与实际结果比较,验证了该模型具有较高的可信度。  相似文献   

11.
提出了一种基于交通流预测的主干道相交路口优化控制方法,将交通流预测与交通信号控制相结合,用于解决交通流量较大的城市主干道相交路口的信号控制问题.建立神经网络预测模型,用变异粒子群优化算法优化网络结构以提高预测精度和速度,将预测的下2个相位队长作为模糊控制的输入以确定下一绿相位时间,在后一绿相位持续时间内放行该相位经预测但尚未全部排队的车辆.仿真实验表明该方法能有效地减小平均车辆延误时间,达到了保持干道交通通畅的目的.  相似文献   

12.
为了实现对城市道路交叉口交通流数据的全面采集、减少成本、提高效率,提出以手机为交叉口交通流信息获取源的思路。研究了将手机定位数据(运动速度、经纬度)转化为交通流数据的方法。通过检测空间和检测单元的确定,根据用户的运动速度和位置信息,按照步行、自行车、小汽车和公交车将不同手机用户的出行方式进行了准确判断,最终实现了交叉口交通量、车流流向和延误数据的自动采集。  相似文献   

13.
应用贝叶斯网络对城市平面交叉口交通事故进行了分析。以3 584起交通事故数据为分析依据,基于专家知识和数据融合方法建立了城市平面交叉口交通事故分析的贝叶斯网络结构,利用服从Drichlet分布的贝叶斯方法对贝叶斯网络进行了参数学习。结合网络模型,应用联合树引擎算法推断了在车辆类型、交叉口类型、交叉口控制方式和交通参与者等因素的影响下平面交叉口交通事故类型的变化。研究结果表明,在城市平面交叉口中,由自行车导致的正面碰撞事故的概率最大,为22.83%,由于交通参与者转向不当引起的侧面碰撞的概率为23.44%,同时也易导致刮擦事故的发生;交通参与者的感知判断失误导致尾随碰撞事故的概率为23.62%。  相似文献   

14.
交通量预测的神经网络集成方法   总被引:6,自引:1,他引:6  
首次将神经网络集成技术引入交通量预测。神经网络集成通过训练多个神经网络并将各网络输出进行合成,可显著提高学习系统的泛化能力。在Boosting和Bagging集成方法的基础上,提出基于分治策略的神经网络集成方法,并且讨论了网络权重分配算法。使用上述三种神经网络集成预测模型,对苏州某交叉口实时交通量进行预测,预测结果比较理想,优于单一神经网络预测方法。实验表明,神经网络集成用于交通量预测是有效可行的。  相似文献   

15.
在已有城市单路口交通模糊控制方式和控制策略的基础上,提出了基于全网络化结构的神经模糊控制方法.方法考虑了影响信号灯控制策略的各种因素,根据分级并行控制思路,对车流采用不同的优先级和不同的控制策略进行协调控制,提高了系统的实时性,降低了系统的复杂性.采用6层全网络结构的神经网络进行了控制算法的实现,并利用已有数据对神经网络进行了学习训练,使网络结构和参数具有更为广泛的适用性.  相似文献   

16.
黄文杰 《交通科技》2009,(Z1):89-91
以车辆排队长度为控制量,对单个交叉口信号配时提出模糊控制方法,并通过仿真模型,对采用模糊控制方法与未使用该方法在车辆的平均延误时间进行比较。仿真结果表明,在车辆的平均延误时间、信号周期等方面,模糊控制信号配时方法具有优越性。  相似文献   

17.
全网络神经模糊控制在城市单路口交通实时控制中的应用   总被引:1,自引:0,他引:1  
在已有城市单路口交通模糊控制方式和控制策略的基础上,提出了基于全网络化结构的神经模糊控制方法。方法考虑了影响信号灯控制策略的各种因素,根据分级并行控制思路,对车流采用不同的优先级和不同的控制策略进行协调控制,提高了系统的实时性,降低了系统的复杂性。采用6层全网络结构的神经网络进行了控制算法的实现,并利用已有数据对神经网络进行了学习训练,使网络结构和参数具有更为广泛的适用性。  相似文献   

18.
基于BP神经网络的短时交通流预测   总被引:1,自引:0,他引:1  
对比分析短时交通流预测模型,对BP神经网络预测算法的原理进行分析说明,用BP神经网络建立短时交通流预测模型,利用华南快速路的实测交通流数据来验证模型的可行性。  相似文献   

19.
基于时空特性和RBF神经网络的短时交通流预测   总被引:1,自引:0,他引:1  
针对实际交通流变化具有较明显的动态性、周相似性和相关性,提出一种基于交通流的时空变化特性和RBF神经网络的短时交通流预测方法。该方法充分挖掘和利用了交通流时间序列的周相似性和相关性,以及相邻路段上交通流的相互影响因素,结合RBF神经网络自学习、自组织、自适应功能和大范围的数据融合特性对交通流进行短时预测。用实例进行了仿真计算和分析,结果表明该方法能够提高交通流的预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号