共查询到20条相似文献,搜索用时 15 毫秒
1.
Turning vehicle volumes at signalized intersections are critical inputs for various transportation studies such as level of service, signal timing, and traffic safety analysis. There are various types of detectors installed at signalized intersections for control and operation. These detectors have the potential of producing volume estimates. However, it is quite a challenge to use such detectors for conducting turning movement counts in shared lanes. The purpose of this paper was to provide three methods to estimate turning movement proportions in shared lanes. These methods are characterized as flow characteristics (FC), volume and queue (VQ) length, and network equilibrium (NE). FC and VQ methods are based on the geometry of an intersection and behavior of drivers. The NE method does not depend on these factors and is purely based on detector counts from the study intersection and the downstream intersection. These methods were tested using regression and genetic programming (GP). It was found that the hourly average error ranged between 4 and 27% using linear regression and 1 to 15% using GP. A general conclusion was that the proposed methods have the potential of being applied to locations where appropriate detectors are installed for obtaining the required data. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
2.
Loop detectors are devices that are most commonly used for obtaining data at intersections. Multiple detectors are usually required to monitor a location, and this reduces the accuracy of detectors for collecting traffic volumes. The purpose of this paper is to increase the accuracy of loop detector counts using Adaptive Neural Fuzzy Inference System (ANFIS) and Genetic Programming (GP) based on detector volume and occupancy. These methods do not need microscopic analysis and are easy to employ. Four approaches for one intersection are used in a case study. Results show that the models can improve intersection detector counts significantly. Results also show that ANFIS produces more accurate counts compared to regression and GP. 相似文献
3.
Length-based vehicle classification is an important topic in traffic engineering, because estimation of traffic speed from single loop detectors usually requires the knowledge of vehicle length. In this paper, we present an algorithm that can classify vehicles passing by a loop detector into two categories: long vehicles and regular cars. The proposed algorithm takes advantage of event-based loop detector data that contains every vehicle detector actuation and de-actuation “event”, therefore time gaps between consecutive vehicles and detector occupation time for each vehicle can be easily derived. The proposed algorithm is based on an intuitive observation that, for a vehicle platoon, longer vehicles in the platoon will have relatively longer detector occupation time. Therefore, we can identify longer vehicles by examining the changes of occupation time in a vehicle platoon. The method was tested using the event-based data collected from Trunk Highway 55 in Minnesota, which is a high speed arterial corridor controlled by semi-actuated coordinated traffic signals. The result shows that the proposed method can correctly classify most of the vehicles passing by a single loop detector. 相似文献
4.
Recent advances in communication and computing technology have made travel time measurements more available than ever before. In urban signalized arterials, travel times are strongly influenced by traffic signals. This study presents a novel method based on well‐known principles to estimate traffic signal performance (or more precisely their major “through” movements) based on travel time measurements. The travel times were collected between signals in the field by using point‐to‐point travel time measurement technologies. Closed‐circuit television cameras and signal databases were used to collect traffic demand and signal timings, respectively. Then, the volume/capacity ratio of major downstream signal movements was computed based on demand and signal timings. This volume/capacity ratio was then correlated with travel times on the relevant intersection approach. The best volume‐delay function was found, along with many other functions, to fit the field data. This volume‐delay function was then used to estimate volume/capacity ratios and, indirectly, a few other signal performance metrics. The method, called travel time‐based signal performance measurements, was automated and displayed on a Google Map. The findings show that the proposed method is accurate and robust enough to provide necessary information about signal performance. A newly developed volume‐delay function was found to work just slightly better than the Bureau of Public Roads curve. Several issues, which may reduce the accuracy of the proposed method, are identified, and their solutions are proposed for future research. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
5.
A variety of sensor technologies, such as loop detectors, traffic cameras, and radar have been developed for real-time traffic monitoring at intersections most of which are limited to providing link traffic information with few being capable of detecting turning movements. Accurate real-time information on turning movement counts at signalized intersections is a critical requirement for applications such as adaptive traffic signal control. Several attempts have been made in the past to develop algorithms for inferring turning movements at intersections from entry and exit counts; however, the estimation quality of these algorithms varies considerably. This paper introduces a method to improve accuracy and robustness of turning movement estimation at signalized intersections. The new algorithm makes use of signal phase status to minimize the underlying estimation ambiguity. A case study was conducted based on turning movement data obtained from a four-leg signalized intersection to evaluate the performance of the proposed method and compare it with two other existing well-known estimation methods. The results show that the algorithm is accurate, robust and fairly straightforward for real world implementation. 相似文献
6.
Estimation of intersection turning movements is one of the key inputs required for a variety of transportation analysis, including intersection geometric design, signal timing design, traffic impact assessment, and transportation planning. Conventional approaches that use manual techniques for estimation of turning movements are insensitive to congestion. The drawbacks of the manual techniques can be amended by integrating a network traffic model with a computation procedure capable of estimating turning movements from a set of link traffic counts and intersection turning movement counts. This study proposes using the path flow estimator, originally used to estimate path flows (hence origin–destination flows), to derive not only complete link flows, but also turning movements for the whole road network given some counts at selected roads and intersections. Two case studies using actual traffic counts are used to demonstrate the proposed intersection turning movement estimation procedure. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
7.
Vehicle classification is an important traffic parameter for transportation planning and infrastructure management. Length-based vehicle classification from dual loop detectors is among the lowest cost technologies commonly used for collecting these data. Like many vehicle classification technologies, the dual loop approach works well in free flow traffic. Effective vehicle lengths are measured from the quotient of the detector dwell time and vehicle traversal time between the paired loops. This approach implicitly assumes that vehicle acceleration is negligible, but unfortunately at low speeds this assumption is invalid and length-based classification performance degrades in congestion.To addresses this problem, we seek a solution that relies strictly on the measured effective vehicle length and measured speed. We analytically evaluate the feasible range of true effective vehicle lengths that could underlie a given combination of measured effective vehicle length, measured speed, and unobserved acceleration at a dual loop detector. From this analysis we find that there are small uncertainty zones where the measured length class can differ from the true length class, depending on the unobserved acceleration. In other words, a given combination of measured speed and measured effective vehicle length falling in the uncertainty zones could arise from vehicles with different true length classes. Outside of the uncertainty zones, any error in the measured effective vehicle length due to acceleration will not lead to an error in the measured length class. Thus, by mapping these uncertainty zones, most vehicles can be accurately sorted to a single length class, while the few vehicles that fall within the uncertainty zones are assigned to two or more classes. We find that these uncertainty zones remain small down to about 10 mph and then grow exponentially as speeds drop further.Using empirical data from stop-and-go traffic at a well-tuned loop detector station the best conventional approach does surprisingly well; however, our new approach does even better, reducing the classification error rate due to acceleration by at least a factor of four relative to the best conventional method. Meanwhile, our approach still assigns over 98% of the vehicles to a single class. 相似文献
8.
At non‐signalized mid‐block street crossings in China's cities, pedestrians often weave between motor vehicle flows. This paper investigated the influence patterns of the gender and age of pedestrians, the presence of a pedestrian group, vehicles' interference and the crossing direction on the crossing time at non‐signalized mid‐block street crossings in Changsha, China. The results show that the crossing speed is approximately 1–1.1 m/s; the crossing time increases with increasing age, and the crossing speed of a pedestrian will be quicker when the time gap between the pedestrian and the oncoming vehicle is smaller if he/she decides to cross. This paper also analyzed the crossing time pattern when pedestrians cross lane by lane and found that pedestrians spend the most time crossing the first lane and the least time crossing the middle lane, regardless of whether they are crossing from the curb to the central island or from the central island to the curb. The crossing speed is an important input to the design of pedestrian facilities, so these findings can be applied to the assessment of pedestrian crossing safety in China's cities and can provide a basis for the design of pedestrian crossing facilities. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
9.
With the ability to accurately forecast road traffic conditions several hours, days and even months ahead of time, both travellers and network managers can take pro-active measures to minimise congestion, saving time, money and emissions. This study evaluates a previously developed random forest algorithm, RoadCast, which was designed to achieve this task. RoadCast incorporates contexts using machine learning to forecast more accurately contexts such as public holidays, sporting events and school term dates. This paper evaluates the potential of RoadCast as a traffic forecasting algorithm for use in Intelligent Transport System applications. Tests are undertaken using a number of different forecast horizons and varying amounts of training data, and an implementation procedure is recommended. 相似文献
10.
11.
We develop a methodology to optimize the schedule coordination of a full‐stop service pattern and a short‐turning service pattern on a bus route. To capture the influence of bus crowding and seat availability on passengers' riding experience, we develop a Markov model to describe the seat‐searching process of a passenger and an approach to estimate the transition probabilities of the Markov model. An optimization model that incorporates the Markov model is proposed to design the short‐turning strategy. The proposed model minimizes the total cost, which includes operational cost, passengers' waiting time cost and passengers' in‐vehicle travel time cost. Algorithm is developed to produce optimal values of the decision variables. The proposed methodology is evaluated in a case study. Compared with methodologies that ignore the effect of bus crowding, the proposed methodology could better balance bus load along the route and between two service patterns, provide passengers with better riding experience and reduce the total cost. In addition, it is shown that the optimal design of the short‐turning strategy is sensitive to seat capacity. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
12.
Baibing Li 《Transportation Research Part B: Methodological》2012,46(1):85-99
Vehicle time headway is an important traffic parameter. It affects roadway safety, capacity, and level of service. Single inductive loop detectors are widely deployed in road networks, supplying a wealth of information on the current status of traffic flow. In this paper, we perform Bayesian analysis to online estimate average vehicle time headway using the data collected from a single inductive loop detector. We consider three different scenarios, i.e. light, congested, and disturbed traffic conditions, and have developed a set of unified recursive estimation equations that can be applied to all three scenarios. The computational overhead of updating the estimate is kept to a minimum. The developed recursive method provides an efficient way for the online monitoring of roadway safety and level of service. The method is illustrated using a simulation study and real traffic data. 相似文献
13.
The control of the evolution of road traffic streams is highly related to productivity, safety, sustainability and, even, comfort. Although, nowadays, the findings from research efforts and the development of new technologies enable accurate traffic forecasts in almost any conditions, these calculations are usually limited by the data and the equipment available. Most traffic management centres depend on the data provided, at best, by double-loop detectors. These loops supply time means over different aggregation periods, which are indiscriminately used as the bases for subsequent estimations. Since space mean speeds are those needed in most applications (note the fundamental relationship between flow and density in traffic flow theory), most current practice begins with an error. This paper introduces a simple algorithm that the allows estimation of space mean speeds from the data provided by the loops without the need for any additional financial outlay, as long as the traffic in each time interval of aggregation is stationary and its speed distribution is log-normal. Specifically, it is focused on the calculation of the variance of the speeds with regard to the time mean, thus making possible to use the relationship between time mean speeds and space mean speeds defined by Rakha (2005). The results obtained with real data show that the algorithm behaves well if the calculation conditions help fulfil the initial hypotheses. The primary difficulties arise with transient traffic and, in this case, other specific methodologies should be used. Data fusion seems promising in this regard. Nevertheless, it cannot be denied that the improvement provided by the algorithm turns out to be highly beneficial both when used alone in the case of stationarity or as a part of a fusion. 相似文献
14.
This paper does present a comprehensive concept for a robust and reliable truck detection involving solely one single presence sensor (e.g. an inductive loop, but also any other presence sensor) at a signalized traffic junction. Hereby, two operations modes are distinguished: (a) during green traffic light phases, and (b) a much challenging case, during red traffic light phases. First, it is shown how difficult the underlying classification task is, this mainly due to strongly overlapped classes, which cannot be easily separated by simple hyper-planes. Then, a novel soft radial basis cellular neural/nonlinear network (SRB-CNN) based concept is developed, validated and extensively benchmarked with a selection of the best representatives of the current related state-of-the-art classification concepts (namely the following: support vector machines with radial basis function, artificial neural network, naive Bayes, and decision trees). For benchmarking purposes, all selected competing classifiers do use the same features and the superiority of the novel CNN based classifier is thereby underscored, as it strongly outperforms the other ones. This novel SRB-CNN based concept does satisfactorily fulfill the hard industrial requirements regarding robustness, low-cost, high processing speed, low memory consumption, and the capability to be deployed in low cost embedded systems. 相似文献
15.
The problem of designing a layout of bike stations for public bike‐sharing systems entails selecting a number of stations and then constructing them within a planning area having many bike traffic zones and candidate bike stations. In this paper, we proposed a mathematical model to formulate the layout of public bike stations with the objective of minimizing users' total travel time and investment budget constraints. The model can guarantee that the needs for picking up and dropping off bikes amidst all bike travel demands are satisfied. Using this model, the number and locations of bike stations and the number of bikes and parking lockers at each bike station can be simultaneously determined. A typical example solved by lingo solver is created to illustrate the proposed model. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
16.
Unconventional intersection designs have been used to increase the capacity of intersections that are over‐saturated under conventional ones. However, existing unconventional designs typically require extra land space and their effectiveness often depends on drivers' familiarity with the uncommon operating rules. To overcome these challenges, we propose a new unconventional design, where movements that are mutually incompatible under the conventional design can be made compatible of each other by allocating exit lanes to them appropriately, thereby creating opportunities for capacity improvement. We develop a lane‐based capacity optimization model that incorporates the allocation of exit lanes as decision variables. The model is formulated as a Binary Mixed Integer Linear Programming problem, which can be efficiently solved by standard branch‐and‐bound algorithms. Numerical experiments show that significant capacity improvement can be obtained under our design. Besides proposing a new unconventional design, we also contribute to the literature of lane‐based signal optimization methods by providing a novel linear formulation for the latest, yet nonlinear, model described in Wong and Heydecker [Transportation Research Part B 45(4):667–681]. This improvement is methodologically beneficial as linear models are computationally more convenient than nonlinear ones. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
17.
This paper presents an enhanced cell transmission model (CTM) to capture traffic operation at signalized intersections without explicit permissive left‐turn yielding rules (i.e. aggressive permissive left‐turn maneuvers may not necessarily yield to opposing through traffic), which can be widely observed in many developing countries. Different from previous studies that focus on traffic dynamics on approaching links, this study contributes to modeling traffic operations within the intersection. A novel cell transmission framework with various types of virtual cells is proposed to model the dynamics of traffic movements from approach to exit. The unique phenomenon of competitive occupying of the conflict point between the left turn and opposing through movements is modeled. The cell state indicating its blockage is proposed to capture the dynamic queue formulation and dissipation and to evaluate the operational traffic performance at the intersection. Field validation results show that the proposed model can capture the operation of traffic at signalized intersections without explicit permissive left‐turn yielding rules with significantly higher level of accuracy than traditional traffic flow models. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
In this paper, we propose an improved traffic model for simulating train movement in railway traffic. The proposed model is based on optimal velocity car‐following model. In order to test the proposed model, we use it to simulate the train movement with fixed‐block system. In simulations, we analyze and discuss the space–time diagram of railway traffic flow and the trajectories of train movement. Simulation results demonstrate that the proposed model can be successfully used for simulating the train movement in railway traffic. From the space–time diagram, we find some complex phenomena of train flow, which are observed in real railway traffic, such as train delays. By analyzing the trajectories of train movement, some dynamic characteristics of trains can be reproduced. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
19.
An on‐street parking maneuver can often start a temporary bottleneck, leading to additional delay endured by the following vehicles. If the maneuver occurs near a signalized intersection, the service rate of the intersection might be reduced. In this paper, a model is built to analyze the effects of parking maneuvers on the intersection service rate. Based on the hydrodynamic theory of traffic flow, the perturbation caused by the parking maneuver is analyzed. Using dimensional analysis, we illustrate the relation between the background conditions, the distance from the parking area to the intersection, and the intersection service rate. Based on this relation, one can compute the service rate reduction caused by existing on‐street parking areas. A minimum distance between the parking area and the intersection to avoid such reduction can be accordingly found. Numerical examples based on empirical data from the city of Zurich, Switzerland, are provided to illustrate the practical applications. Although the analysis is based on streets with a single lane per direction, the findings can provide some insights regarding different situations. We hope such findings can be used as a basis for developing on‐street parking design guidelines. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
20.
The problem of studying public transportation systems with autonomous vehicles is challenging because of behavioral differences that make existing models poorly fit and the technical difficulties involved in studying large autonomous systems operating on a grand scale. In this paper, we propose the following: (i) an autonomous transportation network setting; (ii) a method for modeling autonomous vehicles in simulation; and (iii) a high‐performance simulation platform that allows analysis and visualization of transportation technologies. Results from microsimulation confirm theoretical benefits and improvements from employing autonomous systems in an example setting and highlight the platform's general ability to allow researchers to implement novel transportation systems and study the cost benefit variations occurring between them. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献