共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent empirical studies have revealed that travel time variability plays an important role in travelers' route choice decisions. To simultaneously account for both reliability and unreliability aspects of travel time variability, the concept of mean‐excess travel time (METT) was recently proposed as a new risk‐averse route choice criterion. In this paper, we extend the mean‐excess traffic equilibrium model to include heterogeneous risk‐aversion attitudes and elastic demand. Specifically, this model explicitly considers (1) multiple user classes with different risk‐aversions toward travel time variability when making route choice decisions under uncertainty and (2) the elasticity of travel demand as a function of METT when making travel choice decisions under uncertainty. This model is thus capable of modeling travelers' heterogeneous risk‐averse behaviors with both travel choice and route choice considerations. The proposed model is formulated as a variational inequality problem and solved via a route‐based algorithm using the modified alternating direction method. Numerical analyses are also provided to illustrate the features of the proposed model and the applicability of the solution algorithm. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
Anthony Chen Zhong ZhouWilliam H.K. Lam 《Transportation Research Part B: Methodological》2011,45(10):1619-1640
In this paper, we extend the α-reliable mean-excess traffic equilibrium (METE) model of Chen and Zhou (Transportation Research Part B 44(4), 2010, 493-513) by explicitly modeling the stochastic perception errors within the travelers’ route choice decision processes. In the METE model, each traveler not only considers a travel time budget for ensuring on-time arrival at a confidence level α, but also accounts for the impact of encountering worse travel times in the (1 − α) quantile of the distribution tail. Furthermore, due to the imperfect knowledge of the travel time variability particularly in congested networks without advanced traveler information systems, the travelers’ route choice decisions are based on the perceived travel time distribution rather than the actual travel time distribution. In order to compute the perceived mean-excess travel time, an approximation method based on moment analysis is developed. It involves using the conditional moment generation function to derive the perceived link travel time, the Cornish-Fisher Asymptotic Expansion to estimate the perceived travel time budget, and the Acerbi and Tasche Approximation to estimate the perceived mean-excess travel time. The proposed stochastic mean-excess traffic equilibrium (SMETE) model is formulated as a variational inequality (VI) problem, and solved by a route-based solution algorithm with the use of the modified alternating direction method. Numerical examples are also provided to illustrate the application of the proposed SMETE model and solution method. 相似文献
3.
Recent empirical studies on the value of time and reliability reveal that travel time variability plays an important role on travelers' route choice decision process. It can be considered as a risk to travelers making a trip. Therefore, travelers are not only interested in saving their travel time but also in reducing their risk. Typically, risk can be represented by two different aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability aspect of acceptable travel time, which is defined as the average travel time plus the acceptable additional time (or buffer time) needed to ensure more frequent on‐time arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late arrivals (though infrequent) that have a travel time excessively higher than the acceptable travel time. Most research in the network equilibrium based approach to modeling travel time variability ignores the unreliability aspect of unacceptable late arrivals. This paper examines the effects of both reliability and unreliability aspects in a network equilibrium framework. Specifically, the traditional user equilibrium model, the demand driven travel time reliability‐based user equilibrium model, and the α‐reliable mean‐excess travel time user equilibrium model are considered in the investigation under an uncertain environment due to stochastic travel demand. Numerical results are presented to examine how these models handle risk under travel time variability. 相似文献
4.
Thorsten Neumann 《先进运输杂志》2014,48(8):1087-1106
Probe vehicle data (PVD) are commonly used for area‐wide measurements of travel time in road networks. In this context, travel times usually refer to fixed edges of an underlying (digital) map. That means measured travel times have to be transformed into so‐called link travel times first. This paper analyzes a common method being applied for solving this task (distance‐based travel time decomposition). It is shown that, in general, its inherent imprecision must not be neglected. Instead, it might cause a serious misinterpretation of data if potential errors in the context of travel time decomposition are ignored. For this purpose, systematic as well as maximum deviations between “decomposed” and “true” link travel times are mathematically analyzed. By that, divergent statements in the literature about the accuracy of PVD are harmonized. Moreover, conditions for the applicability of the so‐called distance‐proportion method are derived depending on the permitted error level. Three examples ranging from pure theory to real world confirm the analytical findings and underline the problems resulting from distance‐based travel time decomposition at local level, for example, at individual intersections. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
5.
In densely populated and congested urban areas, the travel times in congested multi‐modal transport networks are generally varied and stochastic in practice. These stochastic travel times may be raised from day‐to‐day demand fluctuations and would affect travelers' route and mode choice behaviors according to their different expectations of on‐time arrival. In view of these, this paper presents a reliability‐based user equilibrium traffic assignment model for congested multi‐modal transport networks under demand uncertainty. The stochastic bus frequency due to the unstable travel time of bus route is explicitly considered. By the proposed model, travelers' route and mode choice behaviors are intensively explored. In addition, a stochastic state‐augmented multi‐modal transport network is adopted in this paper to effectively model probable transfers and non‐linear fare structures. A numerical example is given to illustrate the merits of the proposed model. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
6.
Travel time, travel time reliability and monetary cost have been empirically identified as the most important criteria influencing route choice behaviour. We concentrate on travel time and travel time reliability and review two prominent user equilibrium models incorporating these two factors. We discuss some shortcomings of these models and propose alternative bi-objective user equilibrium models that overcome the shortcomings. Finally, based on the observation that both models use standard deviation of travel time within their measure of travel time reliability, we propose a general travel time reliability bi-objective user equilibrium model. We prove that this model encompasses those discussed previously and hence forms a general framework for the study of reliability related user equilibrium. We demonstrate and validate our concepts on a small three-link example. 相似文献
7.
The Hokkaido Shinkansen (HS) bullet train line is under consideration to open in 2020. In this study, travel demand is estimated for the HS. Because some explanatory variables that are used for such estimation can have estimation errors, travel demand estimation risk is also calculated. In addition, because the HS can compete with airlines for modal share, the impacts of travel price competition (TPC) on the travel demand and the demand estimation risk are also estimated. In this study, the travel demand estimation risk is measured as the variance or the SD of the stochastic travel demand. The analysis reveals the following: the modal share of HS is 16% less when TPC is considered than when it is not considered; TPC causes the travel demand estimation risk to decrease; the probabilities of the HS operating at a deficit with and without consideration of TPC are calculated as 31.2% and 1.25%, respectively, and the increase in the mean consumer surplus accruing from the HS is calculated as JPY 47bn/year ($US588m/year) without TPC and as JPY 66bn/year ($US825m/year) with TPC. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
8.
In a large-scale, real-life peak avoidance experiment, we asked participants to provide estimates of their average in-vehicle travel time during their morning commute. After comparing the reported travel times with the actual corresponding travel times, we found that the average travel times were overstated by a factor of 1.5. We showed that driver- and link-specific characteristics partially explained these exaggerations. Using the stated and revealed preference data, we investigated whether the driver-specific reporting errors were consistent with the drivers’ scheduling behaviors in reality and in hypothetical choice experiments. In both cases, we found no robust evidence that drivers behave as if they misperceive travel times to a similar extent as those they misreported, thereby implying that the reported travel times did not represent the actual or perceived travel times in a truthful manner. The results of this study suggest that caution should be recommended when reported travel time data are used in an uncritical manner during transport research and when determining policy. 相似文献
9.
In this paper, a case study is carried out in Hong Kong for demonstration of the Transport Information System (TIS) prototype. A traffic flow simulator (TFS) is presented to forecast the short‐term travel times that can be served as a predicted travel time database for the TIS in Hong Kong. In the TFS, a stochastic deviation coefficient is incorporated to simulate the minute‐by‐minute fluctuation of traffic flows within the peak hour period. The purposes of the case study are: 1) to show the applicability of the TFS for larger‐scale road network; and 2) to illustrate the short‐term forecasting of path travel times in practice. The results of the case study show that the TFS can be applied to real network effectively. The predicted travel times are compared with the observed travel times on the selected paths for an OD pair. The results show that the observed path travel times fall in the 90% confidence interval of the predicted path travel times. 相似文献
10.
Travel time ratio: the key factor of spatial reach 总被引:3,自引:0,他引:3
An important aspect of reach and accessibility is the time people are willing to spend on reaching activity places. In this
paper we see the issue of travel time in an alternative way. Instead of looking at travel time separated from time spent on
activities, we examine the relation between travel time and stay time. We operationalize this relation with the concept “travel
time ratio”. A hypothetical framework underlying these travel time ratios is displayed. We show that for similar types of
activity places the value of travel time ratio are in accordance with each other. We find large differences between trips
for mandatory activities and trips for discretionary activities. The results indicate the stability of the travel time ratios.
Finally, some implications for future research and policy will be mentioned.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
11.
This paper first develops a network equilibrium model with the travel time information displayed via variable message signs (VMS). Specifically, the equilibrium considers the impact of the displayed travel time information on travelers’ route choices under the recurrent congestion, with the endogenous utilization rates of displayed information by travelers. The existence of the equilibrium is proved and an iterative solution procedure is provided. Then, we conduct the sensitivity analyses of the network equilibrium and further propose a paradox, i.e., providing travel time information via VMS to travelers may degrade the network performance under some poor designs. Therefore, we investigate the problem of designing the VMS locations and travel time display within a given budget, and formulate it as a mixed integer nonlinear program, solved by an active-set algorithm. Lastly, numerical examples are presented to offer insights on the equilibrium results and optimal designs of VMS. 相似文献
12.
In this paper, a rear‐end collision control model is proposed using the fuzzy logic control scheme. Through detailed analysis of car‐following cases, our fuzzy control system is established with reasonable control rules. Furthermore, a genetic algorithm is introduced into the fuzzy rules refining process to reduce the computational complexity while maintaining accuracy. Numerical results indicate that our genetic algorithm‐optimized fuzzy logic controller outperforms the traditional fuzzy logic controller in terms of better safety guarantee and higher traffic efficiency. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
Information is effectively the same as a change in uncertainty perceived by an observer. This paper adopts the strict definition of information from Shannon’s Information Theory and provides procedures for quantifying effective provision of traveler information, considering it to be equivalent to the change of perceived uncertainty. The proposed method combines a cognitive grouping theory and an information learning scheme at an individual’s level to evaluate the dynamic information provision in the unit of a bit. Such numerical quantification can be meaningful in evaluating alternatives with more fine-grained information provision strategies and understanding their equity impact. Quantifying information in a manner consistent with Information Theory also provides a ‘shared language’ that facilitates more constructive discussion among stakeholders from different backgrounds. The case study is conducted on a heterogeneous dynamic traffic network near Downtown Los Angeles for evaluating different alternatives of a proposed dynamic message board in terms of its location and dynamic content. 相似文献
14.
This paper attempts to measure the impacts of urban transportation system improvements or changes on the community. The community's perceptions of the impacts are represented by its utilities (or disutilities) over various ranges of values of the multiple attributes representing these impacts. The utility technique used in the evaluation is based upon von Neumann‐Morgenstern (vN‐M, 1947) Utility Theory, and is applied using Raiffa's (1970) Fractile Method. The paper specifically applies the technique to model the perceptions of five subgroups within a community to the impact of a new light rail transit system that is being incorporated in the transportation system of the City of Calgary. Results of the modeling indicate explicitly how the community changes its perception over ranges of values of the attributes evaluated. Biases of various subgroups within the community over these attributes are also shown. Statistical tests indicate that aggregated utility perceptions can represent the utility perceptions of the individual subgroups quite reasonably. 相似文献
15.
Hsing-Chung Chu 《运输规划与技术》2013,36(3):277-295
Abstract This paper examines the reliability measures of freight travel time on urban arterials that provide access to an international seaport. The findings indicate that the reliability index calculated by the median of travel time, which is less sensitive to extreme values in a highly skewed distribution, is more appropriate. This paper also examines several statistical distributions of travel time to determine the best fit to the data of freight trips. The results of goodness-of-fit tests indicate that the log-logistic is the best statistical function for freight travel time during the midday off-peak period. However, the lognormal distribution represents a better fit to arterials with heavily congested traffic during peak periods. Additionally, travel time prediction models identify the relationships between travel time, speeds and other factors that affect travel time reliability. The analysis suggests that incident-induced delays and speed fluctuations primarily contributed to the unreliability of freight movement on the urban arterials. 相似文献
16.
Urban populations transport risk perception is interesting because it is associated with travel mode choices and use. This study investigates changes in transport-related risk constructs in the urban population in Norway in 2004 and 2013, and describes whether people perceive private or public to be associated with the highest risk. The results are based on self-completion questionnaire surveys conducted in two independent representative samples living in the same urban areas in 2004 (n?=?592) and 2013 (n?=?1035). Overall, the respondents perceived the risk as lower in 2013 than in 2004. For both time periods, people consistently assessed the risk constructs related to private motorized transportation as higher than corresponding risk in public transportation. The findings suggest that while transportation risk perception in urban populations may change over time, the pattern that private motorized transportation is associated with a higher perceived risk than public transportation remains stable. 相似文献
17.
Jin-Su Mun 《运输规划与技术》2013,36(6):461-497
Abstract In this paper a route-based dynamic deterministic user equilibrium assignment model is presented. Some features of the linear travel time model are first investigated and then a divided linear travel time model is proposed for the estimation of link travel time: it addresses the limitations of the linear travel time model. For the application of the proposed model to general transportation networks, this paper provides thorough investigations on the computational issues in dynamic traffic assignment with many-to-many OD pairs and presents an efficient solution procedure. The numerical calculations demonstrate that the proposed model and solution algorithm produce satisfactory solutions for a network of substantial size with many-to-many OD pairs. Comparisons of assignment results are also made to show the impacts of incorporation of different link travel time models on the assignment results. 相似文献
18.
This paper reports the most extensive meta-analysis of values of time yet conducted, covering 3109 monetary valuations assembled from 389 European studies conducted between 1963 and 2011. It aims to explain how valuations vary across studies, including over time and between countries. In addition to the customary coverage of in-vehicle time in review studies, this paper covers valuations of walk time, wait time, service headway, parking space search time, departure time switching, time in congested traffic, schedule delay early and late, mean lateness and the standard deviation of travel time. Valuations are found to vary with type of time, GDP, distance, journey purpose, mode, the monetary numeraire and a number of factors related to estimation. Model output values of time compare favourably with earnings data, replicate well official recommended values obtained from major national studies, and are transferable across countries. These implied monetary values serve as very useful benchmarks against which new evidence can be assessed and the meta-model provides parameters and values for countries and contexts where there is no other such evidence. 相似文献
19.
This paper develops an efficient probabilistic model for estimating route travel time variability, incorporating factors of time‐of‐day, inclement weather, and traffic incidents. Estimating the route travel time distribution from historical link travel time data is challenging owing to the interactions among upstream and downstream links. Upon creating conditional probability function for each link travel time, we applied Monte Carlo simulation to estimate the total travel time from origin to destination. A numerical example of three alternative routes in the City of Buffalo shows several implications. The study found that weather conditions, except for snow, incur minor impact on off‐peak and weekend travel time, whereas peak travel times suffer great variations under different weather conditions. On top of that, inclement weather exacerbates route travel time reliability, even when mean travel time increases moderately. The computation time of the proposed model is linearly correlated to the number of links in a route. Therefore, this model can be used to obtain all the origin to destination travel time distributions in an urban region. Further, this study also validates the well‐known near‐linear relation between the standard deviation of travel time per unit distance and the corresponding mean value under different weather conditions. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
20.
Developing demand responsive transit systems are important with regard to meeting the travel needs for elderly people. Although Dial‐a‐ride Problems (DARP) have been discussed for several decades, most researchers have worked to develop algorithms with low computational cost under the minimal total travel costs, and fewer studies have considered how changes in travel time might affect the vehicle routes and service sequences. Ignoring such variations in travel time when design vehicle routes and schedules might lead to the production of inefficient vehicle routes, as well as incorrect actual vehicle arrival times at the related nodes. The purpose of this paper is to construct a DARP formulation with consideration of time‐dependent travel times and utilizes the traffic simulation software, DynaTAIWAN, to simulate the real traffic conditions in order to obtain the time‐dependent travel time matrices. The branch‐and‐price approach is introduced for the time‐dependent DARP and tested by examining the sub‐network of Kaohsiung City, Taiwan. The numerical results reveal that the length of the time window can significantly affect the vehicle routes and quantitative measurements. As the length of the time window increases, the objective value and the number of vehicles will reduce significantly. However, the CPU time, the average pickup delay time, the average delivery delay time and the average actual ride time (ART)/direct ride time (DRT) will increase significantly as the length of the time window increases. Designing the vehicle routes to reduce operating costs and satisfy the requirements of customers is a difficult task, and a trade‐off must be made between these goals. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献