首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhu  Yadi  Chen  Feng  Wang  Zijia  Deng  Jin 《Transportation》2019,46(6):2269-2289

The development of new routes and stations, as well as changes in land use, can have significant impacts on public transit ridership. Thus, transport departments and governments should seek to determine the level and spatio-temporal dependency of these impacts with the aim of adjusting services or improving planning. However, existing studies primarily focus on predicting ridership, and pay relatively little attention to analyzing the determinants of ridership from temporal and spatial perspectives. Consequently, no comprehensive cognition of the spatio-temporal relationship between station ridership and the built environment can be obtained from previous models, which makes them unable to facilitate the optimization of transportation demands and services. To rectify this problem, we have employed a Bayesian negative binomial regression model to identify the significant impact factors associated with entry/exit ridership at different periods of the day. Based on this model, we formulated geographically weighted models to analyze the spatial dependency of these impacts over different periods. The spatio-temporal relationship between station ridership and the built environment was analyzed using data from Beijing. The results reveal that the temporal impacts of most ridership determinants are related to the passenger trip patterns. Furthermore, the spatial impacts correspond with the determinants’ spatial distribution, and the results give some implications on urban and transportation planning. This analysis gives a common analytical framework analyzing impacts of urban characteristics on ridership, and extending researches on how we capture the impacts of urban and other factors on ridership from a comprehensive perspective.

  相似文献   

2.
The existing studies concerning the influence of weather on public transport have mainly focused on the impacts of average weather conditions on the aggregate ridership of public transit. Not much research has examined these impacts at disaggregate levels. This study aims to fill this gap by accounting for intra-day variations in weather as well as public transport ridership and investigating the effect of weather on the travel behavior of individual public transit users. We have collected smart card data for public transit and meteorological records from Shenzhen, China for the entire month of September 2014. The data allow us to establish association between the system-wide public transit ridership and weather condition on not only daily, but also hourly basis and for each metro station. In addition, with the detailed trip records of individual card holders, the travel pattern by public transit are constructed for card holders and this pattern is linked to the weather conditions he/she has experienced. Multivariate modeling approach is applied to analyze the influence of weather on public transit ridership and the travel behavior of regular transit users. Results show that some weather elements have more influence than others on public transportation. Metro stations located in urban areas are more vulnerable to outdoor weather in regard to ridership. Regular transit users are found to be rather resilient to changes in weather conditions. Findings contribute to a more in-depth understanding of the relationship between everyday weather and public transit travels and also provide valuable information for short-term scheduling in transit management.  相似文献   

3.
Transit oriented development (TOD) has been an important topic for urban transportation planning research and practice. This paper is aimed at empirically examining the effect of rail transit station-based TOD on daily station passenger volume. Using integrated circuit (IC) card data on metro passenger volumes and cellular signaling data on the spatial distribution of human activities in Shanghai, the research identifies variations in ridership among rail transit stations. Then, regression analysis is performed using passenger volume in each station as the dependent variable. Explanatory variables include station area employment and population, residents’ commuting distances, metro network accessibility, status as interchange station, and coupling with commercial activity centers. The main findings are: (1) Passenger volume is positively associated with employment density and residents’ commuting distance around station; (2) stations with earlier opening dates and serving as transfer nodes tend to have positive association with passenger volumes; (3) metro stations better integrated with nearby commercial development tend to have larger passenger volumes. Several implications are drawn for TOD planning: (1) TOD planning should be integrated with rail transit network planning; (2) location of metro stations should be coupled with commercial development; (3) high employment densities should be especially encouraged as a key TOD feature; and (4) interchange stations should be more strategically positioned in the planning for rail transit network.  相似文献   

4.
The objective of this research was to develop a simple transit ridership estimation model system for short-range planning. The main feature of the model system is that it exploits knowledge of transit link volumes which are obtained readily from on-off counts. Extensive use is made of default values for model parameters, taken directly from the transportation literature. The remaining parameters can be derived easily from generally available land-use and socioeconomic data. Expensive household surveys and time-consuming model calibrations are not required. A sequence of simple trip generation, trip distribution and modal split models generate trip-purpose specific transit trip tables, denoted as “trial” trip tables. These trip tables and observed transit link volumes are used in a linear programming model which serves as a correction mechanism. The gain in accuracy is achieved by using the ridership information contained in the transit link volumes. The corrected trip tables may be used in a pivot-point analysis to estimate changes in ridership and revenue. The results of a test application of the model system indicate that it can generate accurate ridership estimates when reliable transit link volumes are available from on-off counts, and when the trial transit trip tables as derived from the first three component models are reasonably accurate.  相似文献   

5.
Mobile technologies are generating new business models for urban transport systems, as is evident from recent startups cropping up from the private sector. Public transport systems can make more use of mobile technologies than just for measuring system performance, improving boarding times, or for analyzing travel patterns. A new transaction model is proposed for public transport systems where travelers are allowed to pre-book their fares and trade that demand information to private firms. In this public-private partnership model, fare revenue management is outsourced to third party private firms such as big box retail or large planned events (such as sports stadiums and theme parks), who can issue electronic coupons to travelers to subsidize their fares. This e-coupon pricing model is analyzed using marginal cost theory for the transit service and shown to be quite effective for monopolistic coupon rights, particularly for demand responsive transit systems that feature high cost fares, non-commute travel purposes, and a closed access system with existing pre-booking requirements. However, oligopolistic scenarios analyzed using game theory and network economics suggest that public transport agencies need to take extreme care in planning and implementing such a policy. Otherwise, they risk pushing an equivalent tax on private firms or disrupting the urban economy and real estate values while increasing ridership.  相似文献   

6.
The recent volatility in gasoline prices and the economic downturn have made the management of public transportation systems particularly challenging. Accurate forecasts of ridership are necessary for the planning and operation of transit services. In this paper, monthly ridership of the Metropolitan Tulsa Transit Authority is analyzed to identify the relevant factors that influence transit use. Alternative forecasting models are also developed and evaluated based on these factors—using regression analysis (with autoregressive error correction), neural networks, and ARIMA models—to predict transit ridership. It is found that a simple combination of these forecasting methodologies yields greater forecast accuracy than the individual models separately. Finally, a scenario analysis is conducted to assess the impact of transit policies on long-term ridership.  相似文献   

7.
This study investigates the asymmetric effects of gasoline prices on public transportation use in Taiwan. The empirical results obtained are as follows. First, we verify that gasoline price is an important determinant of transit demand. Gasoline prices have significantly positive effects on bus and mass rapid transit (MRT) use. Second, MRT ridership is more sensitive than bus and railway ridership to gasoline price and income. In the face of oil prices escalation and economic growth, the MRT system should have higher priority in public transportation planning. Third, the effects of gasoline prices on bus and MRT use are asymmetric. Bus and MRT use increases faster when gasoline prices rise than it decreases when gasoline prices fall. The transit agencies should adjust operating strategies faster in the rising of oil prices than in the falling of oil prices. It is important for transit planning to use oil prices as signals and increase the flexibility of operation in dealing with the changes in ridership. Some strategies, such as enhancing the availability of transfer information and updating transit information timely, are helpful to move passengers efficiently.  相似文献   

8.
West Germany is densely populated, averaging 245 inhabitants/km2, but varying widely between urban agglomerations and rural areas. Transport volume has increased by 40% since 1970, with virtually all growth due to private automobiles. Since 1981 public transit has been suffering from decreasing demand.A 1964 Expert's Report to the German federal government was the stimulus for initiating an effective funding mechanism for new public transit construction. In 1965 Germany's first federated transit authority was founded for the region of Hamburg.Principal among the goals of any cooperative agreement among transit companies are improvements for the passengers and improvement of revenues for the companies. To attain these ends, two distinct forms of transit aggrements have been developed in Germany: transit cooperative (Verkehrsgemeinschaft) and transit federation (Verkehrsverbund). The former is more suitable for smaller to medium-sized towns, while the latter is more suitable for larger cities. The two types are described in this article.German transit federations during the 1970s succeeded in significantly increasing ridership, while during the 1980s patronage has either remained steady or has declined. Yet transit federations showed much better perfomance than did public transit in general. In terms of costs and revenues, no public transit organization in Germany is able to break even; deficits vary between 42% and 55%. The author concludes, however, that hidden subsidies for automobile traffic are far higher, because of environmental damage and the high social cost of traffic accidents.  相似文献   

9.
Cities worldwide are implementing modern transit systems to improve mobility in the increasingly congested metropolitan areas. Despite much research on the effects of such systems, a comparison of effects across transit modes and countries has not been studied comprehensively. This paper fills this gap in the literature by reviewing and comparing the effects obtained by 86 transit systems around the world, including Bus Rapid Transit (BRT), Light Rail Transit (LRT), metro and heavy rail transit systems. The analysis is twofold by analysing (i) the direct operational effects related to travel time, ridership and modal shifts, and (ii) the indirect strategic effects in terms of effects on property values and urban development. The review confirms the existing literature suggesting that BRT can attract many passengers if travel time reductions are significantly high. This leads to attractive areas surrounding the transit line with increasing property values. Such effects are traditionally associated with attractive rail-based public transport systems. However, a statistical comparison of 41 systems did not show significant deviations between effects on property values resulting from BRT, LRT and metro systems, respectively. Hence, this paper indicates that large strategic effects can be obtained by implementing BRT systems at a much lower cost.  相似文献   

10.
The major aim of this work is to develop a primary tool for the quantitative determination of land areas needed to fulfil the diverse functions of public transport. The need for such a tool is obvious; worldwide there is a lack of criteria for determining the types of areas needed, their size, and relative location in the urban system. Moreover, there is a lack of awareness regarding land allocation during the various planning stages, both by urban planners and decision makers. This work attempts to identify various types of facilities to be allocated within the urban framework, and to determine quantitative guidelines for the land needed for them. A statistical analysis is performed in order (i) to identify major transit facilities and operational data functions for which land must be allocated, and (ii) to forecast areas for types of facilities not dealt with by the statistical analysis. The statistical forecast is based on fitting a regression model to the input data. The outcome of this work is presented in terms of three statistical relationships and an indirect relationship: between socio-economic and demographic variables (independent) to the dependent variables, either operating variables or land area variables, and between operating variables (independent) and land area variables (dependent), where for the latter there is also an indirect relationship while using standards.  相似文献   

11.
Public subsidy of transit services has increased dramatically in recent years, with little effect on overall ridership. Quite obviously, a clear understanding of the factors influencing transit ridership is central to decisions on investments in and the pricing and deployment of transit services. Yet the literature about the causes of transit use is quite spotty; most previous aggregate analyses of transit ridership have examined just one or a few systems, have not included many of the external, control variables thought to influence transit use, and have not addressed the simultaneous relationship between transit service supply and consumption. This study addresses each of these shortcomings by (1) conducting a cross-sectional analysis of transit use in 265 US urbanized areas, (2) testing dozens of variables measuring regional geography, metropolitan economy, population characteristics, auto/highway system characteristics, and transit system characteristics, and (3) constructing two-stage simultaneous equation regression models to account for simultaneity between transit service supply and consumption. We find that most of the variation in transit ridership among urbanized areas – in both absolute and relative terms – can be explained by factors outside of the control of public transit systems: (1) regional geography (specifically, area of urbanization, population, population density, and regional location in the US), (2) metropolitan economy (specifically, personal/household income), (3) population characteristics (specifically, the percent college students, recent immigrants, and Democratic voters in the population), and (4) auto/highway system characteristics (specifically, the percent carless households and non-transit/non-SOV trips, including commuting via carpools, walking, biking, etc.). While these external factors clearly go a long way toward determining the overall level of transit use in an urbanized area, we find that transit policies do make a significant difference. The observed range in both fares and service frequency in our sample could account for at least a doubling (or halving) of transit use in a given urbanized area. Controlling for the fact that public transit use is strongly correlated with urbanized area size, about 26% of the observed variance in per capita transit patronage across US urbanized areas is explained in the models presented here by service frequency and fare levels. The observed influence of these two factors is consistent with both the literature and intuition: frequent service draws passengers, and high fares drive them away.  相似文献   

12.
Very few studies have examined the impact of built environment on urban rail transit ridership at the station-to-station (origin-destination) level. Moreover, most direct ridership models (DRMs) tend to involve simple a prior assumed linear or log-linear relationship in which the estimated parameters are assumed to hold across the entire data space of the explanatory variables. These models cannot detect any changes in the linear (or non-linear) effects across different values of the features of built environment on urban rail transit ridership, which possibly induces biased results and hides some non-negligible and detailed information. Based on these research gaps, this study develops a time-of-day origin-destination DRM that uses smart card data pertaining to the Nanjing metro system, China. It applies a gradient boosting regression trees model to provide a more refined data mining approach to investigate the non-linear associations between features of the built environment and station-to-station ridership. Data related to the built environment, station type, demographics, and travel impedance including a less used variable – detour, were collected and used in the analysis. The empirical results show that most independent variables are associated with station-to-station ridership in a discontinuous non-linear way, regardless of the time period. The built environment on the origin side has a larger effect on station-to-station ridership than the built environment on the destination side for the morning peak hours, while the opposite holds for the afternoon peak hours and night. The results also indicate that transfer times is more important variables than detour and route distance.  相似文献   

13.
The current study contributes to the literature on transit ridership by considering daily boarding and alighting data from a recently launched commuter rail system in Orlando, Florida – SunRail. The analysis is conducted based on daily boarding and alighting data for 10 months for the year 2015. With the availability of repeated observations for every station, the potential impact of common unobserved factors affecting ridership variables are considered. The current study develops an estimation framework, for boarding and alighting separately, that accounts for these unobserved effects at multiple levels – station, station-week and station-day. In addition, the study examines the impact of various observed exogenous factors such as station level, transportation infrastructure, transit infrastructure, land use, built environment, sociodemographic and weather variables on ridership. The model system developed will allow us to predict ridership for existing stations in the future as well as potential ridership for future expansion sites.  相似文献   

14.
Promoting public transit is a well-recognized policy for sustainable urban transport development. Transit demand analysis proves to be a challenging task in fast growing cities, partially due to the lack of reliable data and applicable techniques for rapidly changing urban contexts. This paper presents an effort to meet the challenge by developing a framework to estimate peak-hour boarding at light-rail transit (LRT) stations. The core part of the framework is an accessibility-weighted ridership model that multiplies potential demand by integral LRT accessibility. Potential demand around LRT stations is generated by using a distance-decay function. The integral LRT accessibility is a route-level factor that indicates the degree of attractiveness to LRT travel for stations in an LRT corridor. A case study in Wuhan, China, shows that the proposed method produces results useful for improving transit demand analysis.  相似文献   

15.
轨道交通建设前期工作对工程造价的影响分析   总被引:1,自引:0,他引:1  
结合部分城市轨道交通前期工作的实际,介绍了轨道交通建设中线网规划、线路沿线土地利用规划的制定、客流预测以及线路敷设方式的确定等前期工作对地铁造价不同的影响方式和影响程度,提出了降低前期投资的几个方法和建议。  相似文献   

16.
This paper studies public transport demand by estimating a system of equations for multimodal transit systems where different modes may act competitively or cooperatively. Using data from Athens, Greece, we explicitly correct for higher-order serial correlation in the error terms and investigate two, largely overlooked, questions in the transit literature; first, whether a varying fare structure in a multimodal transit system affects demand and, second, what the determinants of ticket versus travelcard sales may be. Model estimation results suggest that the effect of fare type on ridership levels in a multimodal system varies by mode and by relative ticket to travelcard prices. Further, regardless of competition or cooperation between modes, fare increases will have limited effects on ridership, but the magnitude of these effects does depend on the relative ticket to travelcard prices. Finally, incorrectly assuming serial independence for the error terms during model estimation could yield upward or downward biased parameters and hence result in incorrect inferences and policy recommendations.  相似文献   

17.
Estimation of ridership on a new transit system in an area where no comparable service existed before is a difficult task of transit planning. Traditional modal split models cannot be used in these cases, because no data or basis for developing a new model or adjusting a “borrowed” model are available. One of the techniques which can be used in this type of situation, is to perform a “concept test” based on public opinion. This approach, however, is plagued with the phenomenon of non-commitment bias of interviewees, and tends to overestimate the ridership. A new fixed route and fixed schedule transit service in Johnson City in Tennessee provided a rare opportunity to perform an investigation on the non-commitment bias through “before” and “after” surveys. The analysis of the non-commitment and actual responses of a sample of residents revealed substantial bias. Overall, the non-commitment ridership estimate was about twice (100% greater than) the actual ridership.:It was also observed that the bias was higher for persons owning automobiles, and for work and shopping trips.  相似文献   

18.
A growing base of research adopts direct demand models to reveal associations between transit ridership and influence factors in recent years. This study is designed to investigate the factors affecting rail transit ridership at both station level and station-to-station level by adopting multiple regression model and multiplicative model respectively, specifically using an implemented Metro system in Nanjing, China, where Metro implementation is on the rise. Independent variables include factors measuring land-use mix, intermodal connection, station context, and travel impedance. Multiple regression model proves 11 variables are significantly associated with Metro ridership at station level: population, employment, business/office floor area, CBD dummy variable, number of major educational sites, entertainment venues and shopping centers, road length, feeder bus lines, bicycle park-and-ride (P&R) spaces, and transfer dummy variable. Results from multiplicative model indicate that factors influencing Metro station ridership may also influence Metro station-to-station ridership, varied by both trip ends (origin/destination) and time of day. In comparison with previous case studies, CBD dummy variable and bicycle P&R are statistically significant to explain Metro ridership in Nanjing. In addition, Metro travel impedance variables have significant influence on station-to-station ridership, representing the basic time-decay relationship in travel distribution. Potential implications of the model results include estimating Metro ridership at station level and station-to-station level by considering the significant variables, recognizing the necessity to establish a cooperative multi-modal transit system, and identifying opportunities for transit-oriented development.  相似文献   

19.
Utilizing daily ridership data, literature has shown that adverse weather conditions have a negative impact on transit ridership and in turn, result in revenue loss for the transit agencies. This paper extends this discussion by using more detailed hourly ridership data to model the weather effects. For this purpose, the daily and hourly subway ridership from New York City Transit for the years 2010–2011 is utilized. The paper compares the weather impacts on ridership based on day of week and time of day combinations and further demonstrates that the weather’s impact on transit ridership varies based on the time period and location. The separation of ridership models based on time of day provides a deeper understanding of the relationship between trip purpose and weather for transit riders. The paper investigates the role of station characteristics such as weather protection, accessibility, proximity and the connecting bus services by developing models based on station types. The findings indicate substantial differences in the extent to which the daily and hourly models and the individual weather elements are able to explain the ridership variability and travel behavior of transit riders. By utilizing the time of day and station based models, the paper demonstrates the potential sources of weather impact on transit infrastructure, transit service and trip characteristics. The results suggest the development of specific policy measures which can help the transit agencies to mitigate the ridership differences due to adverse weather conditions.  相似文献   

20.
In the past few years, numerous mobile applications have made it possible for public transit passengers to find routes and/or learn about the expected arrival time of their transit vehicles. Though these services are widely used, their impact on overall transit ridership remains unclear. The objective of this research is to assess the effect of real-time information provided via web-enabled and mobile devices on public transit ridership. An empirical evaluation is conducted for New York City, which is the setting of a natural experiment in which a real-time bus tracking system was gradually launched on a borough-by-borough basis beginning in 2011. Panel regression techniques are used to evaluate bus ridership over a three year period, while controlling for changes in transit service, fares, local socioeconomic conditions, weather, and other factors. A fixed effects model of average weekday unlinked bus trips per month reveals an increase of approximately 118 trips per route per weekday (median increase of 1.7% of weekday route-level ridership) attributable to providing real-time information. Further refinement of the fixed effects model suggests that this ridership increase may only be occurring on larger routes; specifically, the largest quartile of routes defined by revenue miles of service realized approximately 340 additional trips per route per weekday (median increase of 2.3% per route). Although the increase in weekday route-level ridership may appear modest, on aggregate these increases exert a substantial positive effect on farebox revenue. The implications of this research are critical to decision-makers at the country’s transit operators who face pressure to increase ridership under limited budgets, particularly as they seek to prioritize investments in infrastructure, service offerings, and new technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号