共查询到20条相似文献,搜索用时 0 毫秒
1.
Jin-Su Mun 《运输规划与技术》2013,36(6):461-497
Abstract In this paper a route-based dynamic deterministic user equilibrium assignment model is presented. Some features of the linear travel time model are first investigated and then a divided linear travel time model is proposed for the estimation of link travel time: it addresses the limitations of the linear travel time model. For the application of the proposed model to general transportation networks, this paper provides thorough investigations on the computational issues in dynamic traffic assignment with many-to-many OD pairs and presents an efficient solution procedure. The numerical calculations demonstrate that the proposed model and solution algorithm produce satisfactory solutions for a network of substantial size with many-to-many OD pairs. Comparisons of assignment results are also made to show the impacts of incorporation of different link travel time models on the assignment results. 相似文献
2.
J. W. Hall 《运输规划与技术》2013,36(3):199-208
As part of the continuous process of improving highway safety, the engineer relies heavily on information provided by accident record systems. The study described in this paper sought to determine the reliability of this system in New Mexico. Techniques employed in the study included internal consistency checks, comparison with other record systems, and matching actual and reported crash site data. The extent of omitted and inaccurate data having primary relevance to engineering analyses was found to exceed acceptable limits. Incorrect locational information was the most serious problem. The recommended solutions to this problem consist of a modified accident report form and improved contact with enforcement officials. 相似文献
3.
Jin-Su Mun 《运输规划与技术》2013,36(5):443-466
Abstract A route-based combined model of dynamic deterministic route and departure time choice and a solution method for many origin and destination pairs is proposed. The divided linear travel time model is used to calculate the link travel time and to describe the propagation of flow over time. For the calculation of route travel times, the predictive ideal route travel time concept is adopted. Solving the combined model of dynamic deterministic route and departure time choice is shown to be equivalent to solving simultaneously a system of non-linear equations. A Newton-type iterative scheme is proposed to solve this problem. The performance of the proposed solution method is demonstrated using a version of the Sioux Falls network. This shows that the proposed solution method produces good equilibrium solutions with reasonable computational cost. 相似文献
4.
In densely populated and congested urban areas, the travel times in congested multi‐modal transport networks are generally varied and stochastic in practice. These stochastic travel times may be raised from day‐to‐day demand fluctuations and would affect travelers' route and mode choice behaviors according to their different expectations of on‐time arrival. In view of these, this paper presents a reliability‐based user equilibrium traffic assignment model for congested multi‐modal transport networks under demand uncertainty. The stochastic bus frequency due to the unstable travel time of bus route is explicitly considered. By the proposed model, travelers' route and mode choice behaviors are intensively explored. In addition, a stochastic state‐augmented multi‐modal transport network is adopted in this paper to effectively model probable transfers and non‐linear fare structures. A numerical example is given to illustrate the merits of the proposed model. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
5.
Travel times are generally stochastic and spatially correlated in congested road networks. However, very few existing route guidance systems (RGS) can provide reliable guidance services to aid travellers planning their trips with taking account explicitly travel time reliability constraint. This study aims to develop such a RGS with particular consideration of travellers' concern on travel time reliability in congested road networks with uncertainty. In this study, the spatially dependent reliable shortest path problem (SD‐RSPP) is formulated as a multi‐criteria shortest path‐finding problem in road networks with correlated link travel times. Three effective dominance conditions are established for links with different levels of travel time correlations. An efficient algorithm is proposed to solve SD‐RSPP by adaptively using three established dominance conditions. The complexities of road networks in reality are also explicitly considered. To demonstrate the applicability of proposed algorithm, a comprehensive case study is carried out in Hong Kong. The results of case study show that the proposed solution algorithm is robust to take account of travellers' multiple routing criteria. Computational results demonstrate that the proposed solution algorithm can determine the reliable shortest path on real‐time basis for large‐scale road networks. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
6.
Tao Xing Xuesong Zhou 《Transportation Research Part B: Methodological》2011,45(10):1660-1679
Path travel time reliability is an essential measure of the quality of service for transportation systems and an important attribute in travelers’ route and departure time scheduling. This paper investigates a fundamental problem of finding the most reliable path under different spatial correlation assumptions, where the path travel time variability is represented by its standard deviation. To handle the non-linear and non-additive cost functions introduced by the quadratic forms of the standard deviation term, a Lagrangian substitution approach is adopted to estimate the lower bound of the most reliable path solution through solving a sequence of standard shortest path problems. A subgradient algorithm is used to iteratively improve the solution quality by reducing the optimality gap. To characterize the link travel time correlation structure associated with the end-to-end trip time reliability measure, this research develops a sampling-based method to dynamically construct a proxy objective function in terms of travel time observations from multiple days. The proposed algorithms are evaluated under a large-scale Bay Area, California network with real-world measurements. 相似文献
7.
This paper investigates the reliability of information on prevailing trip times on the links of a network as a basis for route choice decisions by individual drivers. It considers a type of information strategy in which no attempt is made by some central controller or coordinating entity to predict what the travel times on each link would be by the time it is reached by a driver that is presently at a given location. A specially modified model combining traffic simulation and path assignment capabilities is used to analyze the reliability of the real-time information supplied to the drivers. This is accomplished by comparing the supplied travel times (at the link and path levels) to the actual trip times experienced in the network after the information has been given. In addition, the quality of the decisions made by drivers on the basis of this information (under alternative path switching rules) is evaluated ex-post by comparing the actually experienced travel time (given the decision made) to the time that the driver would have experienced without the real-time information. Results of a series of simulation experiments under recurrent congestion conditions are discussed, illustrating the interactions between information reliability and user response. 相似文献
8.
Hsing-Chung Chu 《运输规划与技术》2013,36(3):277-295
Abstract This paper examines the reliability measures of freight travel time on urban arterials that provide access to an international seaport. The findings indicate that the reliability index calculated by the median of travel time, which is less sensitive to extreme values in a highly skewed distribution, is more appropriate. This paper also examines several statistical distributions of travel time to determine the best fit to the data of freight trips. The results of goodness-of-fit tests indicate that the log-logistic is the best statistical function for freight travel time during the midday off-peak period. However, the lognormal distribution represents a better fit to arterials with heavily congested traffic during peak periods. Additionally, travel time prediction models identify the relationships between travel time, speeds and other factors that affect travel time reliability. The analysis suggests that incident-induced delays and speed fluctuations primarily contributed to the unreliability of freight movement on the urban arterials. 相似文献
9.
This paper presents a dynamic network‐based approach for short‐term air traffic flow prediction in en route airspace. A dynamic network characterizing both the topological structure of airspace and the dynamics of air traffic flow is developed, based on which the continuity equation in fluid mechanics is adopted to describe the continuous behaviour of the en route traffic. Building on the network‐based continuity equation, the space division concept in cell transmission model is introduced to discretize the proposed model both in space and time. The model parameters are sequentially updated based on the statistical properties of the recent radar data and the new predicting results. The proposed method is applied to a real data set from Shanghai Area Control Center for the short‐term air traffic flow prediction both at flight path and en route sector level. The analysis of the case study shows that the developed method can characterize well the dynamics of the en route traffic flow, thereby providing satisfactory prediction results with appropriate uncertainty limits. The mean relative prediction errors are less than 0.10 and 0.14, and the absolute errors fall in the range of 0 to 1 and 0 to 3 in more than 95% time intervals respectively, for the flight path and en route sector level. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
10.
Transit agencies often provide travelers with point estimates of bus travel times to downstream stops to improve the perceived reliability of bus transit systems. Prediction models that can estimate both point estimates and the level of uncertainty associated with these estimates (e.g., travel time variance) might help to further improve reliability by tempering user expectations. In this paper, accelerated failure time survival models are proposed to provide such simultaneous predictions. Data from a headway-based bus route serving the Pennsylvania State University-University Park campus were used to estimate bus travel times using the proposed survival model and traditional linear regression frameworks for comparison. Overall, the accuracy of point estimates from the two approaches, measured using the root-mean-squared errors (RMSEs) and mean absolute errors (MAEs), was similar. This suggests that both methods predict travel times equally well. However, the survival models were found to more accurately describe the uncertainty associated with the predictions. Furthermore, survival model estimates were found to have smaller uncertainties on average, especially when predicted travel times were small. Tests for transferability over time suggested that the models did not over-fit the dataset and validated the predictive ability of models established with historical data. Overall, the survival model approach appears to be a promising method to predict both expected bus travel times and the uncertainty associated with these travel times. 相似文献
11.
In this paper, a case study is carried out in Hong Kong for demonstration of the Transport Information System (TIS) prototype. A traffic flow simulator (TFS) is presented to forecast the short‐term travel times that can be served as a predicted travel time database for the TIS in Hong Kong. In the TFS, a stochastic deviation coefficient is incorporated to simulate the minute‐by‐minute fluctuation of traffic flows within the peak hour period. The purposes of the case study are: 1) to show the applicability of the TFS for larger‐scale road network; and 2) to illustrate the short‐term forecasting of path travel times in practice. The results of the case study show that the TFS can be applied to real network effectively. The predicted travel times are compared with the observed travel times on the selected paths for an OD pair. The results show that the observed path travel times fall in the 90% confidence interval of the predicted path travel times. 相似文献
12.
Travel time estimation and prediction on urban arterials is an important component of Active Traffic and Demand Management Systems (ATDMS). This paper aims in using the information of GPS probes to augment less dynamic but available information describing arterial travel times. The direction followed in this paper chooses a cooperative approach in travel time estimation using static information describing arterial geometry and signal timing, semi-dynamic information of historical travel time distributions per time of day, and utilizes GPS probe information to augment and improve the latter. First, arterial travel times are classified by identifying different travel time states, then link travel time distributions are approximated using mixtures of normal distributions. If prior travel time data is available, travel time distributions can be estimated empirically. Otherwise, travel time distribution can be estimated based on signal timing and arterial geometry. Real-time GPS travel time data is then used to identify the current traffic condition based on Bayes Theorem. Moreover, these GPS data can also be used to update the parameters of the travel time distributions using a Bayesian update. The iterative update process makes the posterior distributions more and more accurate. Finally, two comprehensive case studies using the NGSIM Peachtree Street dataset, and GPS data of Washington Avenue in Minneapolis, were conducted. The first case study estimated prior travel time distributions based on signal timing and arterial geometry under different traffic conditions. Travel time data were classified and corresponding distributions were updated. In addition, results from the Bayesian update and EM algorithm were compared. The second case study first tested the methodologies based on real GPS data and showed the importance of sample size. In addition, a methodology was proposed to distinguish new traffic conditions in the second case study. 相似文献
13.
Traffic incidents are recognised as one of the key sources of non-recurrent congestion that often leads to reduction in travel time reliability (TTR), a key metric of roadway performance. A method is proposed here to quantify the impacts of traffic incidents on TTR on freeways. The method uses historical data to establish recurrent speed profiles and identifies non-recurrent congestion based on their negative impacts on speeds. The locations and times of incidents are used to identify incidents among non-recurrent congestion events. Buffer time is employed to measure TTR. Extra buffer time is defined as the extra delay caused by traffic incidents. This reliability measure indicates how much extra travel time is required by travellers to arrive at their destination on time with 95% certainty in the case of an incident, over and above the travel time that would have been required under recurrent conditions. An extra buffer time index (EBTI) is defined as the ratio of extra buffer time to recurrent travel time, with zero being the best case (no delay). A Tobit model is used to identify and quantify factors that affect EBTI using a selected freeway segment in the Southeast Queensland, Australia network. Both fixed and random parameter Tobit specifications are tested. The estimation results reveal that models with random parameters offer a superior statistical fit for all types of incidents, suggesting the presence of unobserved heterogeneity across segments. What factors influence EBTI depends on the type of incident. In addition, changes in TTR as a result of traffic incidents are related to the characteristics of the incidents (multiple vehicles involved, incident duration, major incidents, etc.) and traffic characteristics. 相似文献
14.
In many countries, decision-making on proposals for national or regional infrastructure projects in passenger and freight transport includes carrying out a cost–benefit analysis for these projects. Reductions in travel times are usually a key benefit. However, if a project also reduces the variability of travel time, travellers, freight operators and shippers will enjoy additional benefits, the ‘reliability benefits’. Until now, these benefits are usually not included in the cost–benefit analysis. To include reliability of travel or transport time in the cost–benefit analysis of infrastructure projects not only monetary values of reliability, but also reliability forecasting models are needed. As a result of an extensive feasibility study carried out for the German Federal Ministry of Transport, Building and Urban Development this paper aims to provide a literature overview and outcomes of an expert panel on how best to calculate and monetise reliability benefits, synthesised into recommendations for implementing travel time reliability into existing transport models in the short, medium, and long term. The paper focuses on road transport, which has also been the topic for most of the available literature on modelling and valuing transport time reliability. 相似文献
15.
Recent empirical studies on the value of time and reliability reveal that travel time variability plays an important role on travelers' route choice decision process. It can be considered as a risk to travelers making a trip. Therefore, travelers are not only interested in saving their travel time but also in reducing their risk. Typically, risk can be represented by two different aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability aspect of acceptable travel time, which is defined as the average travel time plus the acceptable additional time (or buffer time) needed to ensure more frequent on‐time arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late arrivals (though infrequent) that have a travel time excessively higher than the acceptable travel time. Most research in the network equilibrium based approach to modeling travel time variability ignores the unreliability aspect of unacceptable late arrivals. This paper examines the effects of both reliability and unreliability aspects in a network equilibrium framework. Specifically, the traditional user equilibrium model, the demand driven travel time reliability‐based user equilibrium model, and the α‐reliable mean‐excess travel time user equilibrium model are considered in the investigation under an uncertain environment due to stochastic travel demand. Numerical results are presented to examine how these models handle risk under travel time variability. 相似文献
16.
Luiz Flavio Autran Monteiro Gomes Joao Erick de Mattos Fernandes João Carlos C. B. Soares de Mello 《先进运输杂志》2014,48(3):223-237
This article deals with the problem of decision support for the selection of an aircraft. This is a problem faced by an airline company that is investing in regional charter flights in Brazil. The company belongs to an economic group whose core business is logistics. The problem has eight alternatives to be evaluated under 11 different criteria, whose measurements can be exact, stochastic, or fuzzy. The technique chosen for analyzing and then finding a solution to the problem is the multicriteria decision aiding method named NAIADE (Novel Approach to Imprecise Assessment and Decision Environments). The method used allows tackling the problems by working with quantitative as well as qualitative criteria under uncertainty and imprecision. Another considerable advantage of NAIADE over other multicriteria methods relies in its characteristics of not requiring a prior definition of the weights by the decision maker. As a conclusion, it can be said that the use of NAIADE provided for consistent results to that aircraft selection problem. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
17.
Travel time ratio: the key factor of spatial reach 总被引:3,自引:0,他引:3
An important aspect of reach and accessibility is the time people are willing to spend on reaching activity places. In this
paper we see the issue of travel time in an alternative way. Instead of looking at travel time separated from time spent on
activities, we examine the relation between travel time and stay time. We operationalize this relation with the concept “travel
time ratio”. A hypothetical framework underlying these travel time ratios is displayed. We show that for similar types of
activity places the value of travel time ratio are in accordance with each other. We find large differences between trips
for mandatory activities and trips for discretionary activities. The results indicate the stability of the travel time ratios.
Finally, some implications for future research and policy will be mentioned.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
18.
This paper attempts to measure the impacts of urban transportation system improvements or changes on the community. The community's perceptions of the impacts are represented by its utilities (or disutilities) over various ranges of values of the multiple attributes representing these impacts. The utility technique used in the evaluation is based upon von Neumann‐Morgenstern (vN‐M, 1947) Utility Theory, and is applied using Raiffa's (1970) Fractile Method. The paper specifically applies the technique to model the perceptions of five subgroups within a community to the impact of a new light rail transit system that is being incorporated in the transportation system of the City of Calgary. Results of the modeling indicate explicitly how the community changes its perception over ranges of values of the attributes evaluated. Biases of various subgroups within the community over these attributes are also shown. Statistical tests indicate that aggregated utility perceptions can represent the utility perceptions of the individual subgroups quite reasonably. 相似文献
19.
A nascent ridesharing industry is being enabled by new communication technologies and motivated by the many possible benefits, such as reduction in travel cost, pollution, and congestion. Understanding the complex relations between ridesharing and traffic congestion is a critical step in the evaluation of a ridesharing enterprise or of the convenience of regulatory policies or incentives to promote ridesharing. In this work, we propose a new traffic assignment model that explicitly represents ridesharing as a mode of transportation. The objective is to analyze how ridesharing impacts traffic congestion, how people can be motivated to participate in ridesharing, and, conversely, how congestion influences ridesharing, including ridesharing prices and the number of drivers and passengers. This model is built by combining a ridesharing market model with a classic elastic demand Wardrop traffic equilibrium model. Our computational results show that (i) the ridesharing base price influences the congestion level, (ii) within a certain price range, an increase in price may reduce the traffic congestion, and (iii) the utilization of ridesharing increases as the congestion increases. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
20.
Reliability is an important factor in route, mode and also departure time choice analysis and is a key performance indicator for transport systems. However, the current metrics used to measure travel time variability may be not sufficient to fully represent reliability. Better understanding of the distributions of travel times is needed for the development of improved metrics for reliability. A comprehensive data analysis involving the assessment of longitudinal travel time data for two urban arterial road corridors in Adelaide, Australia, demonstrates that the observed distributions are more complex than previously assumed. The data sets demonstrate strong positive skew, very long upper tails, and sometimes bimodality. This paper proposes the use of alternative statistical distributions for travel time variability, with the Burr Type XII distribution emerging as an appropriate model for both links and routes. This statistical distribution has some attractive properties that make it suitable for explicit definition of many travel time reliability metrics. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献