首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 227 毫秒
1.
为了分析不同头部形状动能弹丸侵彻921钢靶的侵彻性能,采用无网格物质点法对该问题进行了研究。基于弹丸侵彻921钢靶的试验条件,利用物质点法建立了数值模型,对弹丸侵彻921钢靶的运动过程进行了仿真模拟,并与试验结果进行了对比分析,验证了数值模型的有效性。物质点法能够很好的模拟弹丸侵彻过程,为研究该问题提供了新的研究方法。在此基础上,分析了平头弹丸、半圆头弹丸、锥头弹丸侵彻921均质钢靶板和加筋钢靶板的毁伤效应。研究结果表明,在一定初速度范围内,半圆头弹丸侵彻性能要比锥头弹丸侵彻性能好,平头弹丸最差。加筋靶板结构较均质靶板结构有更优良的抗侵彻性能。  相似文献   

2.
[目的]旨在研究新型轻质复合装甲板——石墨烯增强铝基SiC复合材料装甲靶板的抗侵彻失效机理。[方法]利用光镜与扫描电镜对石墨烯增强铝基SiC复合材料进行微观形貌观察;结合弹道枪试验,利用AUTODYN有限元软件建立1/2模型,破片质量为30 g,靶板厚度为43 mm,采用不同的本构模型描述材料,进行数值模拟仿真计算。[结果]结合弹道枪试验及仿真计算,得到石墨烯增强铝基SiC复合材料复合靶板抗侵彻的过程为:破片侵彻靶板时,靶板表层铝合金受破片挤压形成环形卷曲破口,破片继续向后挤压过程中,靶板不断侵蚀破片头部;且破片不断向后冲击剩余靶板形成变形锥,破片速度足够大时,贯穿靶板形成花瓣型破口。[结论]结合微观形貌观察及弹道枪试验,仿真计算结果显示:Johnson-Cook,Cowper-Symonds及Johnson-Holmquist 3种本构模型中,Johnson-Holmquist本构模型更适合描述石墨烯增强铝基SiC复合材料的抗侵彻机理。  相似文献   

3.
文中对破片侵彻单层体单元靶板过程进行数值模拟研究,根据动态响应结果统计出破片侵彻靶板后的直径和靶板冲塞块厚度,从而建立破片墩粗率和靶板冲塞比关于破片直径和靶板厚度的关系;其次,结合数值仿真计算结果,对破片侵彻单层靶板剩余速度半经验公式中的参数进行计算,提出了破片侵彻双层横舱壁结构剩余速度预报公式,对公式的可靠性进行了验证.  相似文献   

4.
《舰船科学技术》2015,(9):21-23
采用数值仿真方法,建立半穿甲战斗部对航母甲板侵彻效应的数值仿真计算模型;确定了材料模型及参数;结合相关试验数据对模型进行验证。结果表明,在选取的6个正侵彻算例和3个斜侵彻算例中,弹丸穿过靶板后的剩余速度与相关参考文献中的相应实验测定值之间的最大相对误差和平均相对误差分别为6.81%和2.37%,且计算得到的破坏模式与实验结果相一致,验证了模型的有效性。该模型可应用于半穿甲战斗部侵彻航母甲板的毁伤效应研究。  相似文献   

5.
提出一种截面呈弧锥结合状的变壁厚环形药型罩结构,对其形成环形爆炸成型弹丸(EFP)的过程进行数值模拟;建立了舰船侧舷防护模型,将舰船目标等效成多层间隔薄靶,使用新的环形EFP对三层间隔靶板开展垂直侵彻研究。结果表明:新型环形EFP具有良好的飞行稳定性、密实度和材料利用率高等优点;侵彻体可切透前两层靶板,对第三层靶板开环形坑8mm深,切孔外半径达83.39mm;侵彻体速度呈阶梯式下降,在切透第二层靶板时质量损耗最大。  相似文献   

6.
[目的]针对有限元法处理弹体侵彻船用钢板时因网格畸变而无法准确模拟破口破坏形态及其形成的动态过程的问题,[方法]采用基于物质点法(Material Point Method,MPM)构建弹体侵彻舰船板壳结构的数值仿真模型,模拟弹体在侵彻过程中的破甲特性。将在不同初速度下侵彻5和10 mm厚靶板后的破口及塑性变形模拟结果与实验结果进行对比,以验证所提方法的有效性。[结果]结果表明:物质点法的模拟结果与实验结果吻合较好;弹体侵彻靶板的破口以及塑性变形区基本保持不变,且破口略大于弹体直径;弹体对靶板的破坏属于冲塞形式的穿甲破坏;半球形弹体以低、中、高的速度侵彻舰船外壳的靶板破坏形式属于冲塞破坏模式,速度大小对靶板的破口影响不大,而对靶板破口处隆起的高度影响较大。[结论]所提数值方法可为研究导弹侵彻舰船板壳提供新的有效途径,计算结果可为舰船结构的防护设计提供参考依据。  相似文献   

7.
破片载荷是舰船防护结构设计中的重要输入参数,目前对不同形状破片的侵彻性能的分析缺乏量化的对比数据,直接影响着舰船防护结构设计中对破片载荷的选取。采用ANSYS/LS-DYNA软件对立方体形、圆柱形(长径比为1.5)和球形等3种形状破片侵彻945钢均质靶板的过程进行仿真计算,得到表征破片侵彻性能的弹道极限速度。结果表明:在相同质量下,圆柱形破片的侵彻性能最强,球形破片和立方体形破片次之。由于圆柱形破片的侵蚀比例明显小于球形破片和立方体形破片,与靶板的接触面积较小,侵彻能量更加集中,导致其侵彻性能较强。破片的侵彻性能越强,其消耗的穿靶动能越少,穿靶耗能随速度变化的影响越小。  相似文献   

8.
采用LS-DYNA显示分析,研究了杆式破片在不同攻角垂直侵彻硬铝靶板的响应,得出了不同着靶角度下破片侵彻能力,分析了临界速度、剩余速度、破口直径以及靶板塑性区域等参数,并总结了这些参数的变化规律。  相似文献   

9.
研究平头弹和半圆形弹对带斜向肋板的钢/尼龙夹层结构抗侵彻性能。选用Johnson-Cook和CowperSymonds方程分别作为钢和尼龙的本构模型,进行2种弹体以不同初速度对肋板角度为15°,30°和45°的不同夹层结构侵彻数值仿真,获得了3种夹层结构针对2种弹体的弹道极限。结果表明:斜向肋板可迫使弹体产生偏航;弹体在临界贯穿夹层结构时弹体偏角达到最大,且弹体偏角随弹体初速度的增加而递减;弹体贯穿夹层结构产生的偏角与其剩余速度呈负相关关系;肋板角度为15°时的抗弹性能最优。  相似文献   

10.
《舰船科学技术》2015,(Z1):27-34
利用非线性瞬态动力学软件MSC/Dytran,对战斗部破片侵彻X型夹芯双层舱壁结构的过程进行数值模拟,分析在不同质量及初始速度下破片的剩余速度和舱壁结构的能量变化,总结了破片的剩余速度和舱壁结构的吸能随侵彻载荷参数变化的规律。最后在破片侵彻单层靶板剩余速度经验公式的基础上,运用等效厚度法对单层靶板剩余速度经验公式进行修正后,得到了破片侵彻双层舱壁结构的剩余速度公式,为双层舱壁结构工程化应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号