首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 375 毫秒
1.
为分析高速公路中道路瓶颈造成的堵塞现象,本文改进KKW (Kerner-Klenov-Wolf) 模型, 建立跟驰规则;综合考虑车间距和车速对车辆换道的影响,建立自由换道和强制性换道规则;并对高速公路中不同车流量条件下,道路瓶颈上游的堵塞区域分布、换道行为特征和车道上交通参数的变化情况进行仿真研究。结果表明:在给定的交通量条件下,汇流车道的拥堵区域长度处于动态平衡状态,不会随时间而变化,且道路瓶颈前的汇流行为会导致目标车道上严重的速度下降,汇流车道和目标车道上车辆速度变化趋同;从换道集群特征来看,道路瓶颈前因高交通流量形成的低速汇流车辆倾向于以小集团的方式统一进行换道,造成目标车道上剧烈的交通震荡;瓶颈消失后,交通恢复时间随进口交通流量的上升而线性增长。  相似文献   

2.
允许车辆借反向车道超车的双向交通道路是城市路网的重要组成部分.本文考虑了双向交通道路的车辆行驶规则,研究了无信号控制交叉口的车辆优先通行权分配规则,构建了一个双向交通的城市路网交通流元胞自动机模型,研究了城市路网交通流的动态特性.研究结果表明,临界密度随着路网规模的增加而下降,路网交通密度的增加会加速拥堵闭环的形成,换道概率的增加会降低路网车速和缩短局部死锁现象形成的时间,单位时间换道车辆数与换道概率及交通密度之间存在着密切的关系.  相似文献   

3.
可靠合理的车道变换模型能提高微观交通仿真精度.为了研究车道变换行为意图起因及行为过程的规律,利用高空摄像法分析了城市干道基本路段驾驶人变道驾驶行为的特征,获取了变道车辆与其周围车辆距离、车速等的数值关系,提出期望车道的概念,总结了期望车道选择和车辆车道变换的基本规律,建立了基于驾驶行为的直线路段车道变换模型.最后编写V...  相似文献   

4.
在车联网环境下,为满足精细化的车辆诱导需求,提出基于换道轨迹规划模型的车道级行程时间估计方法.建立路网基础道路拓扑模型,对所构建的路网模型进行Link划分,并利用改进的5次多项式模型对车辆行驶轨迹进行描述,构建车辆在不同路段Link间行驶的换道轨迹规划模型;整合车辆在路段各个Link单元的行车轨迹与行程时间,实现车道级...  相似文献   

5.
设计长度合理的加速车道能有效地缓解快速路合流区频繁出现的交通瓶颈问题,因此采用数据驱动方法对快速路合流区的加速车道长度进行研究。利用无人机设备测取了快速路合流区的交通数据,从交通流特性及车辆汇入行为这两个角度对实测数据进行分析,得到了合流区车辆的驾驶行为;根据合流区交通流特点,对数据集进行聚类分析,使用生成对抗式网络训练不同合流区汇入行为车辆的跟驰换道模型,并与实测数据和SUMO仿真软件中内置模型进行对比分析;应用生成对抗式网络模型进行交通环境仿真,选取速度、交通密度、交通冲突率指标建立奖励评价函数,得出了加速车道长度设计的推荐值。研究结果表明:采用主线车辆提前减速和向内侧车道换道这两种手段,可实现协同换道避让匝道汇入的车辆;相比SUMO软件内置模型,生成对抗式网络模型更加贴近实际情况;仿真得出的单车道平行式加速车道长度分别在100、 80、 60km/h情况下的推荐值为280、 240、 200 m。  相似文献   

6.
传统换道模型中,把前后临界空隙作为参数固定数值,忽视了车辆和车道间的动态交互作用等因素.从分子动力学角度,系统考虑跟驰需求安全特性,从动态的需求安全距离角度研究车辆在“跟驰-换道-跟驰”过程中的行驶状态转换.确保在换道完成时,换道车辆和目标车道后车能以需求安全距离进行跟车行驶,建立了模拟分子动力学的期望安全间距模型,并对模型进行了仿真分析.结果表明,分子动力学特性模型可以把跟驰行为和换道行为很好地结合起来.研究成果为分析车辆运行交互特性,车辆可变限速技术,自适应巡航控制技术等提供理论依据和技术支撑.  相似文献   

7.
传统换道模型中,把前后临界空隙作为参数固定数值,忽视了车辆和车道间的动态交互作用等因素.从分子动力学角度,系统考虑跟驰需求安全特性,从动态的需求安全距离角度研究车辆在“跟驰—换道—跟驰”过程中的行驶状态转换.确保在换道完成时,换道车辆和目标车道后车能以需求安全距离进行跟车行驶,建立了模拟分子动力学的期望安全间距模型,并对模型进行了仿真分析.结果表明,分子动力学特性模型可以把跟驰行为和换道行为很好地结合起来.研究成果为分析车辆运行交互特性,车辆可变限速技术,自适应巡航控制技术等提供理论依据和技术支撑.  相似文献   

8.
为深入分析城市道路驾驶员换道行为的影响因素,基于大连市西南路路段的车辆运行轨迹 数据,引入随机效用理论,建立了城市道路车辆自由换道模型,并对模型进行了标定和验证,且 应用弹性理论定量分析了换道概率对不同因素的敏感度。结果表明,所建模型可以较好地预测车 辆的自由换道行为;驾驶员换道决策对本车与当前车道前方车辆之间的车头间距最为敏感;相对 于当前车道前方空隙的刺激,相邻车道驾驶环境的诱惑对驾驶员换道决策的影响较小,说明在前 方无不利刺激(狭小的驾驶空间或加速空间) 的情况下,驾驶员在行驶过程中倾向于保持在当前 车道。该研究结果可进一步应用于城市道路换道行为的微观仿真研究中,以提高其仿真精度。  相似文献   

9.
为探究智能网联自动驾驶车辆(Connected and Autonomous Vehicle, CAV)与人工驾驶车辆 (Human Driving Vehicle, HDV)混合行驶的多车道异质交通流运行特征,本文剖析了异质交通流中不同类型车辆的跟驰模式,提出不同类型车辆双车道及多车道换道模型,进而构建了多车道异质交通流仿真模型,并分析了不同CAV混入率下的道路通行能力及换道行为特征。研究结果表明,随着CAV渗透率的提高,单车道通行能力由1678 pcu·h-1提升至4200 pcu·h-1,交通流临界密 度由25 pcu·km-1增长至35 pcu·km-1 ,同一渗透率下不同车道数的道路通行能力及临界密度值呈现显著差异性。异质交通流换道行为呈现三阶段特征:在低密度下,不同类型车辆均可自由行驶及换道;密度在20~100 pcu·km-1 时,车辆换道频率呈“上凸”状,CAV渗透率越高,HDV凸形峰值越大,而CAV峰值较低;在高密度下,受可换道空间的约束,不同类型车辆均无法完成换道。此外,进一步讨论了不同CAV渗透率及密度条件下的异质交通流仿真效益,包括交通量提升及秩序改善特征等。研究成果有助于理解智能网联环境下多车道异质交通流运行状况,为未来异质交通流管理提供理论参考。  相似文献   

10.
为研究高速公路隧道临近段车辆换道行为,提高隧道路段行车安全水平,在广东省的3条高速公路隧道临近路段开展自然驾驶试验,采集换道车辆的行车轨迹以及周围行车环境等数据。基于采集到的车辆换道数据,采用生存分析的全参数估计方法,考虑不同驾驶人换道风险感知水平的异质性,构建随机参数加速失效时间(AFT)模型,分析隧道临近段行车环境、车辆运行状态等潜在因素对车辆换道持续时间的影响。研究结果表明:相较于固定参数AFT模型,随机参数AFT模型具有更好的拟合优度;至隧道进口的距离、起始车道前车的车速差、换道方向和至目标车道前车距离会对高速公路隧道临近段车辆换道持续时间产生显著影响;车辆换道位置距离隧 道进口越近,至目标车道前车的距离越近,换道持续时间越短;相较于换道车辆车速大于起始车道前车的情况,换道车辆处于非跟驰状态和车速小于起始车道前车时,换道持续时间分别增加 7%和20%。研究结果可为高速公路隧道临近段交通安全设施改善和微观驾驶行为模型构建提供理论依据和方法指导。  相似文献   

11.
为准确刻画交叉口共享空间内交通个体的运动和交互过程,并为智能汽车虚拟测试提供可靠背景交通流仿真环境,本文提出一种混合交通流交叉口共享空间交互行为模型。基于人类认知过程,模型被设计为“感知-决策-执行”的3层通用框架结构,模拟混合交通流中不同类型交 通个体从感知、决策直至执行的交互全过程。感知层提出一种二维平面交互对象选择方法,通过个体感知范围和轨迹冲突有序筛选交互对象,表征冲突交互的动态性特征;决策层基于当前时刻的交互对象和实时交通环境状况,使用交互行为决策方法为不同类型的交通个体分别选择适合的行为进行交互;执行层通过计算生成执行当前行为决策所需要的轨迹、加速度等关键参数,共 同控制仿真个体按照行为决策结果在二维平面上运动和交互。基于智能汽车Opendrive高精度 路网,构建虚拟测试仿真平台,并将所提出的模型注入平台进行测试。仿真结果表明,模型能较 好地复现交叉口共享空间中交通个体间的交互。研究结果有助于为智能汽车虚拟测试提供可靠背景交通流环境,并进一步提高虚拟测试工具的测试可信度、测试效率及泛化能力。  相似文献   

12.
为解决车路协同环境下大规模路网中车辆群体协同决策问题,提出了分布式车辆群体协同决策方法;在深入分析交通控制特性的基础上,构建了路网分解模型,将大规模协同决策问题分解成若干个同质小规模子问题,每个子问题覆盖了上游路段、路口和下游路段这3类不同交通区域;基于虚拟车辆映射技术构建了车辆群体协同决策模型,将路口区域二维车辆群体协同决策问题转化为一维问题;与路段区域内车辆群体协同决策方式相同,在路口区域内通过控制虚拟车队中车辆的等效车头时距来完成车辆之间的交互和冲突消解,进而采用统一的协同决策参数来解决各子问题中不同区域内车辆群体的协同决策问题;基于不同区域内车辆群体协同决策参数的统一化,设计了上、下游区域之间的协作机制来保证上游车辆在充分考虑下游交通状态的基础上做出合适的驾驶决策。仿真结果表明:在不同的交通需求设置下,采用提出的方法后,车辆在通过冲突区的过程中均具有平滑的时空轨迹,避免了车辆时空轨迹出现剧烈波动;相对于纯分布式方法,提出的方法在给定的仿真条件下可使车辆燃油消耗最大降低14%;因此,在大规模路网中实施提出的分布式车辆群体协同决策方法可有效降低冲突区对车流连续性的影响,从而保证了车...  相似文献   

13.
为解决机非混行造成的交通低效问题,构建单向平面分流路网,即以机动车干路单向交通组织为基础,以机动车支路和自行车、公交专用路双向交通组织为辅助的公交专用、机非分离的路网模式。首先,采用VISUM,VISSIM模型,对单向平面分流路网与传统混合路网的路网特性、交通运输效率进行分析,结果表明,分流路网在交通绕行、转向比例方面与传统混合路网基本一致。其次,在对两套路网体系进行优化设计的基础上,通过仿真分析,得出单向平面分流路网的运输效率远高于传统混合路网。最后指出,将干路单向化处理,发挥单向道路的横向可穿越特性,辅以减少干路绕行的支路体系,是单向平面分流路网实现高效运行的关键。  相似文献   

14.
根据车路协同环境城市快速路分流区不同车型的自动、人工驾驶混合车流特征,引入动态加速度、可变换道概率改进元胞自动机模型车流运行规则;设计了考虑主路自动驾驶渗透率、大型车混入率、驶出自动驾驶渗透率、驶出车流率、出口匝道车道数、换道决策点距离等因素耦合作用的分流区换道仿真试验;对比分析了多因素耦合作用下驶出车辆自由换道率、平均换道距离等指标影响程度,研究了城市快速路分流区道路通行能力变化规律;提出了基于可变换道决策点距离的分流区道路混合车流通行能力提升策略。研究结果表明:分流区驶出车辆自由换道率越高,道路通行能力越大;主路车流自动驾驶渗透率对通行能力的影响最为显著,自动驾驶环境可达到人工驾驶环境道路通行能力的2倍;出口匝道车道数对通行能力的影响不显著,2条出口匝道比1条出口匝道的通行能力提升约3%;换道决策点距离对通行能力的影响较为显著,车辆换道决策点距离从100 m增加到150 m时,分流区道路通行能力可提高9.6%~10.6%。可见,可借助移动式交通标志提前引导车辆换道决策,显著提高分流区道路通行能力。  相似文献   

15.
提出了由实时控制与仿真计算机系统、视景模拟系统、声响模拟系统、运动模拟系统和中央控制台等组成的汽车驾驶模拟系统总体结构.汽车模拟器应用在交通工程中涉及3种主要仿真模型——汽车动力学模型、路网模型和交通仿真模型.以车辆在交叉路口从次干道左转弯到主干道时,主干道直行车辆之间最小可接受车头时距为例,介绍了利用汽车模拟器进行交通工程仿真研究的方法.  相似文献   

16.
为了估计路网瞬时所能承载的车辆数,首先建立在途车辆数与路网均速的关系,推算路网运行的边界速度;其次,提出路网中车辆速度分布的概率模型,并建立车速分布参数随路网均速变化的动态模型;进而,将边界速度代入动态模型获得对应的车速分布参数,恢复对应的车辆速度分布;将车速分布与交通流速度—密度曲线进行匹配,获得不同密度条件下车辆数所占比例;待求车辆总数乘以密度分布得到不同密度下的车辆数,不同密度下车头间距之和等于车道加权的公路总里程,解方程得到车辆总数。以北京市为例,用来自1.2 万辆私人小汽车的浮动车数据分别估算了北京市中心城区1 368km2范围内快速路、主干路、次支路三个等级路网的承载力。结果显示,该方法计算效率高、操作性强,适用于大规模路网测算,在交通运行仿真、分析及控制领域具有广泛的应用前景。  相似文献   

17.
为解决城市发展带来的交通拥堵问题,发掘道路交通的潜力,提高车路协同环境下车辆在路网中的行驶效率,面向群体车辆提出了一种诱导优化方法和协同控制策略;在车辆诱导分配方面,在起始点和目的地之间的可达路径中,以交通效率最优、车辆排放最小为目标,设计了基于道路饱和度、车辆行程时间和延误的群体车辆分配规则,建立了群体车辆诱导分配优化模型,并用多目标非支配排序遗传算法-Ⅱ(NSGA-Ⅱ)和多目标粒子群优化算法进行求解;在车辆协同运行控制策略方面,基于引力场思想建立了多车协同运行模型,并提出了多车协同加减速策略;通过仿真验证比较了不同网联自动驾驶车辆(CAV)渗透率下的车辆诱导优化结果,同时仿真了车辆协同加减速策略,并将诱导优化方法和协同控制策略进行了联合仿真。仿真结果表明:多目标诱导分配方法可以提升车辆速度和环境效益,且群体车辆平均速度与CAV渗透率正相关;在四车组队行驶环境中,车辆协同加减速策略能够将车辆在加速和减速时的初始平均加速度分别提高15.0%和8.2%,让车辆快速达到目标速度,保障行车安全;在联合仿真环境中,路网群体车辆的加速度平均提高了11.6%,速度平均提高了1.6%,碳氧化合物排放量减少约4.9%。由此可见,提出的方法能够提高路网通行效率,降低车辆能源消耗,减少对环境造成的不良影响。   相似文献   

18.
为了研究利用驾驶模拟舱研究驾驶行为的效果,考虑道路几何线形、交通设施、环境条件、交通条件等因素,以北京四环道路环境为例搭建模拟场景,在该模拟环境和相应真实道路环境下进行车辆跟驰实验,提取并对比了加减速跟车状态下的反应时间和车头间距数据,从虚拟环境深度线索和仿真车辆行为特性两方面分析了实验结果.研究结果表明,在加速和减速跟驰状态, 在仿真环境中的驾驶人反应时间均略大于真实道路环境,但差别不显著;仿真环境下的车头间距显著大于真实环境;采用驾驶模拟舱研究驾驶行为时,需修正与距离相关的参数才能得到与实际道路环境相符的结果,修正系数的取值范围为1.5~2.0.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号