首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
吴伟 《路基工程》2017,(5):77-80
目前,在国内高速铁路建设中,CRTSⅡ型板式无砟轨道应用比较广泛,而CRTSⅡ型板式无砟轨道在桥头需设置端刺系统,端刺结构较高且为刚性结构,与两侧路基的刚度差较大,如不处理,将影响该处轨道的平顺性,路桥过渡段需考虑端刺统筹设置。结合合蚌高铁的路桥过渡段设计,运用FLAC3D有限元软件模拟计算路桥间刚度变化情况,分析了不同路桥过渡段形式在载荷作用下的变形特征,并通过检测加以验证。  相似文献   

2.
高速铁路路基变形控制值的研究   总被引:5,自引:0,他引:5  
曹新文  蔡英 《路基工程》1998,(2):38-41,71
本文在参考国内外资料的基础上,分析了高速铁路路基变形控制值的确定原则和方法。通过车辆/轨道/路基竖向动力分析和有限元计算,针对我国高速铁路路基设计原则,提出了基床的累积下沉、基床的弹性变形和路基填土的压密下沉的控制值的建议值。  相似文献   

3.
以双块式无砟轨道路基典型结构为研究对象,分析车辆轴重、结构层间接触条件、轨道结构整体模量、支承层模量和基床表层模量等对路基面动力响应的影响,分析路基动力响应对各参数的敏感性。数值仿真结果表明:在车辆单轴荷载作用下,路基面动应力分布表现为横向均匀、纵向三角形的基本形式;对路基面动应力沿线路纵向分布长度影响的主要因素,是无砟轨道结构的整体刚度、车辆轴重、支承层模量等;结构面间接触状态劣化导致无砟轨道结构刚度的降低和路基面的动压力增大。  相似文献   

4.
铁路路基基床是承受轨道结构和列车荷载的基础,当列车运行速度提高至400+km/h时,增大了基床动应力、动变形、动应变的不确定性。基于《铁路路基设计规范(极限状态法)》(Q/CR 9127—2018),分别建立了基床动应力、动变形、动应变的功能函数;其次基于可靠度的方法,研究400+km/h高速铁路路基的基床参数的合理性。结果表明:基床K 30及动轴重指标对控制基床动变形更为敏感。  相似文献   

5.
本刊特稿     
##正##高速铁路要为列车的高速行驶提供一个高平顺性和高稳定性的轨下基础,而路基作为轨道结构的基础必须具有强度高、刚度大、稳定性和耐久性好,并能抵抗各种自然因素的影响等性能。因此,高速铁路的出现对我国传统铁路路基设计、施工、养护维修提出了新的挑战。普通铁路路基工程是按强度破坏设计的,而高速铁路路基的主要控制因素则是变形问题。高速铁路路  相似文献   

6.
高速铁路路基结构的动力有限元分析   总被引:1,自引:0,他引:1  
从轨道的几何不平顺角度出发,提出了列车荷载的简化计算模型。通过改变基床表层、底层及地基土的刚度,利用大型通用有限元软件ANSYS对路基进行非线性动力有限元分析,揭示基床及地基刚度对路基的变形、动应力及加速度的影响,并得出了一些有意义的结论。  相似文献   

7.
路基与桥梁过渡段的技术措施   总被引:4,自引:0,他引:4  
路桥过渡段出现路基病害的主要原因是:地基条件、台后填料、设计和施工等多种因素。在路桥过渡区段,对不符合高速铁路地基条件的桥头软弱地基应进行地基处理,严格控制过渡段填筑的施工技术标准,改善桥台结构形式等,以满足线路的平顺要求。  相似文献   

8.
为了合理制定隧道下穿高速铁路的变形控制标准,采用现场调研和统计分析等方法,对高速铁路轨道、扣件及路基的相互作用关系开展研究,提出高速铁路路基沉降控制标准的制定方法。研究结果表明: 1)轨道最大可允许变形由下穿点轨道扣件的最大可调整量、当前已用调整量和当前平顺度等数据确定; 2)轨道变形控制标准根据下穿点周边环境及列车实际运行速度选取合适的安全系数,在最大可允许变形量的基础上进行折减; 3)路基变形控制标准根据路基与轨道变形的相互关系确定。提出的轨道变形控制标准适用于高速铁路无砟轨道,路基变形控制标准适用于土质地层盾构隧道引起的路基变形。  相似文献   

9.
由于路桥过渡段在结构上为塑性变形和刚度突变体,因此会由于材料不同而引起线路纵向变形,以及因工后沉降差而引起轨面弯折。通过研究分析其原因,并在施工中加以改进,以期提高高速铁路路桥过渡段在施工中的刚柔结合度。  相似文献   

10.
随着高速铁路大规模修建,因地质条件复杂等诸多因素影响,部分线路路基存在不同程度的沉降、隆起等病害问题,直接影响线路轨道的平顺性与行车安全。这些病害主要是通过人工定期轨检车检测和人工巡检发现,受高铁运行天窗极大限制,检测效果及时效性均无法保证。本文以某运营高速铁路路基沉降变形病害为研究对象,通过介绍一种路基沉降变形无线自动化监测技术及其系统应用,并将监测结果与轨检车检测数据进行了对比验证,为运营高速铁路路基沉降、隆起变形病害安全监控提供一定借鉴。  相似文献   

11.
综合考虑不同结构层之间的相互作用,结合无砟板式轨道动力学模型,利用有限元软件建立车辆-轨道-路基耦合系统的动力学空间数值模型,分析了时速350 km/h高速列车在运营时正梯形和倒梯形形式路桥过渡段的动力响应。结果表明:列车荷载作用下,两种路桥过渡段的动力响应基本上一致;倒梯形过渡段的沉降量稍大于正梯形过渡段,而正梯形过渡段比倒梯形过渡段更有利于保持轨道的平顺性;路桥连接处(桥台后5 m范围内)是整个路桥过渡段的薄弱环节,应该单独考虑其设计、施工过程。综合考虑机车的各项动力学指标,建议将路桥过渡段轨面弯折角  相似文献   

12.
<正>0引言高速铁路是指运行速度在200km·h~(-1)以上的铁路。高速铁路要为列车的高速行驶提供一个高平顺性和高稳定性的轨下基础,因此路基作为轨道结构的基础,必须具有强度高、刚度大、稳定性和耐久性好,并能抵抗各种自然因素的影响等性能。高速铁路的出现对中国传统铁路路基设计、施工、养护维修提出了新的挑战,在许多方面影响和改  相似文献   

13.
路桥过渡段软基路堤的设计与施工   总被引:1,自引:0,他引:1  
结合高等级公路设计施工的实践经验,分析路桥过渡段软基路基路面产生不均匀沉降的原因,提出桥头引道过渡段软基路堤结构的设计与施工技术,以减少路桥间的不平顺,从而防止或避免桥头跳车现象.  相似文献   

14.
高速铁路路基过渡段包括正梯形和倒梯形两种过渡形式。为评价不同过渡段形式对车辆-轨道-路基过渡耦合系统动力特性的影响,基于车辆-轨道-路基耦合力学原理,运用MATLAB计算程序建立了列车-轨道-路基过渡段垂向耦合动力模型。计算结果表明:正梯形路基过渡段形式的刚度变化在纵向和深度方向比倒梯形过渡段形式更平缓,更有利于高速列车行驶的安全和平顺;过渡段3 m范围内系统动力响应变化较为剧烈,在过渡段尺寸及形状均匀段两种过渡段形式下系统动力响应无差异,在过渡段尺寸及形状变化范围内,系统动力响应表现出一定差异,且正梯形过渡段形式下动力响应波动较小。  相似文献   

15.
应用拓扑优化理论,采用简化的假定条件,基于应变能最小即刚度最大原理,对路桥过渡段路基加固体的结构布置形式进行了优化。通过分析荷载模式、填高、加固长度和面积等因素对最优拓扑图形的影响,得出了路桥过渡段路基加固体的最优布置方式。拓扑优化结果表明:路桥过渡段路基加固的不同区域对结构刚度的贡献排序为,固定端附近区域-中间偏上区域-中间偏下区域-路基顶面远端区域;上长下短的倒梯形布置形式的结构刚度最大,其抵抗地基沉降变形的能力最强,表明目前桥头常用的倒梯形布置形式具有理论上的合理性;路基加固体底面布置长度应不小于2 m,由下向上斜率应缓于1∶1。  相似文献   

16.
蒋向军 《路基工程》2023,(1):159-164
基于某沿海高速铁路采用管桩+桩帽加固路桥过渡段深厚软土路基,建立土-路基-桥台-桩基的三维有限元模型,对高铁路基加固后的桥台及台后过渡段路基的变形特性进行分析,并与实测值对比分析。结果表明:采用管桩和桩帽组成的新型结构对路基进行加固,可较好地控制桥台和路基的沉降,缩短沉降稳定时间,可用于无砟轨道路基软土地基加固。  相似文献   

17.
哈大客专路基冻胀变形的观测与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
余雷 《路基工程》2013,(3):54-58
通过哈大客专路基冻胀变形的观测,从全线路基冻胀量的大小和分布、不同结构类型路基冻胀量的差异和发生概率,以及冻胀量沿深度的变化和组成等方面,进行了阐述;通过冻胀原因和控制性因素分析,指出哈大客专路基冻胀变形部位主要集中在基床范围,得出现有路基结构形式下,冻结深度不是控制路基冻胀量的主因和控制基床冻胀变形,特别是基床表层冻胀变形是解决路基冻胀问题的关键等结论;并对寒区高速铁路路基结构形式进行了探讨,为寒区高速铁路路基冻胀病害的防治提供参考。  相似文献   

18.
通过大型有限元软件ANSYS,建立轨道-路基三维有限元模型,分析路基动应力沿线路横向和纵向的分布规律,以及不同轴重和基床表层模量对路基动应力的影响,为以后重载铁路基床的设计和养护维修提供参考。研究结果表明:路基面竖向动应力沿线路横向和纵向的分布都不均匀,横向大致呈“M”形。基床表层动应力的衰减最为急剧,约为40%。随着轴重的增加,路基各层竖向动应力都在增加。基床表层弹性模量为150 MPa时,轴重每增加5 t,基床表面竖向动应力最大增加26.1%。40 t轴载下,基床表层弹性模量每增加50 MPa,基床表面竖向动应力最大增加2.68%。  相似文献   

19.
<正>0引言要确保高速铁路列车高速、安全、舒适、平稳运行以及最大程度地减少维修工作量,就要求轨道必须具有高平顺性。轨道是靠线下工程为支撑基础的,在线下工程中,桥和隧道本身的刚度决定了它们的沉降变形比较容易控制,而路基的刚度小,沉降变形控制的难度大。因此在实际工程中,对某些难以控制的路段会采取加强地基处理措施  相似文献   

20.
盾构隧道下穿既有铁路施工不可避免地会对周边岩层产生扰动,导致铁路线路的不平顺而危及行车安全。该文以厦门地铁2号线盾构下穿厦深线高速铁路路基工程为依托,通过Peck沉降公式和PLAXIS-2D、MIDAS-GTS有限元软件进行数值模拟,分析盾构施工对高速铁路路基与轨道变形影响的时空分布规律;同时在盾构下穿前设立100 m试验段,通过对深层位移孔、地表沉降点监测得到岩层变形规律和盾构合理推进参数,为盾构下穿高速铁路路基提供理论支持。下穿过程中,通过对高速铁路路基和轨面变形的自动化监测,实时调整盾构推进参数以减小引起的沉降,盾构穿越后实测路基最大沉降0.97 mm,确保了高铁运营安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号