首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
排放物与空燃比的关系排放状态与发动机的燃烧直接相关。通常有3种排放物被加以限制,CO,HC或THC,NOX,从图1可看到CO,CO2,HC,NOX及O2与空燃比A/F的关系。概括地讲:·当A/F等于理论空燃比(化学计算值)时,HC最低。这是因为燃油在燃烧过程中基本完全燃烧。偏浓或偏稀的混合气或点火问题均会因燃烧未完成而增加HC。·当A/F接近理论空燃比(化学计算值)时,因有足够的氧,且不易形成积碳,使CO最低。这是由于在理论空燃比处燃烧比较彻底,比理论空燃比浓的混合气将导致CO增加,而较稀的混合气对CO影响较小。·当A/F接近理论空燃比(化学…  相似文献   

2.
1可燃混合气对汽油发动机性能的影响为了保证汽油发动机正常运行,需要提供合适浓度的可燃混合气,可燃混合气浓度决定燃烧时的燃烧速度、气缸压力及火焰温度等,进而决定汽油发动机的工作性能,可使用空燃比及过量空气系数对可燃混合气浓度进行评价。1.1空燃比空燃比是指可燃混合气中空气质量与燃油质量之比。  相似文献   

3.
6常见故障的检查与排除电喷摩托车的常见故障主要有发动机不能起动或起动困难(发动机不转或转动缓慢)、发动机不能起动或起动困难(起动后转动正常)、发动机经常熄火、发动机有时熄火、发动机怠速不良或失速、发动机怠速过高(不降低)、发动机后燃(混合气过稀)、消声器爆燃(后燃)——混合气过浓发动机喘气、加速不良等9种现象。现分别介绍其故障原因及诊断流程图。  相似文献   

4.
在不同的节气门开度、转速、空燃比、点火提前角等运转条件下,对改装的4RB2天然气发动机和原发动机的扭矩、功率等进行测量,实验结果表明,当发动机由燃烧汽油时的工作状态直接变换为燃烧天然气时,发动机的扭矩或功率下降非常大;增大点火提前角和增加点火能量,可使发动机燃烧天然气时的动力性得到改善;发动机燃用天然气时,与浓混合气条件相比稀混合气条件的扭矩在高速时较大,低速时较小。  相似文献   

5.
图4表示的是全范围平板型空燃比传感器在实际空燃比数值小、浓混合气工况下的工作原理。实际空燃比数值小、浓混合气工况时,由于缺氧造成可燃混合气不能完全燃烧,从而产生了大量的未燃烧气体(碳氢化合物和一氧化碳)。实际空燃比数值越小、可燃混合气越浓,产生的碳氢化合物和一氧化碳越多。在此实际空燃比数值小、混合气浓的工况下,发动机电脑在两个空燃比传感器铂电极间施加电压,空燃比传感器空气腔内的氧气在空气腔侧铂电极得到电子后被电离变成氧离子,氧离子从空气腔侧铂电极流到尾气侧铂电极。在尾气侧铂电极,它同穿过空燃比传感器扩散阻…  相似文献   

6.
现代发动机稀燃技术   总被引:1,自引:0,他引:1  
白木  周洁 《重型汽车》2002,(4):30-31,33
1什么是稀燃技术 什么叫稀燃?顾名思义就是发动机混合气中的汽油含量低,汽油与空气之比可达1:25以上.稀燃技术就是发动机在空燃比大于理论空燃比的情况下燃烧,这样,燃料能完全燃烧,也减少了换气损失,从而实现在部分负荷时的节能,降低尾气排放.  相似文献   

7.
通过改变活塞环岸高间隙的方法研究了活塞环间隙对发动机冷起动HC排放的影响.试验结果表明,在冷起动首循环情况下混合气浓度处于稀燃区时,增加50%的活塞环岸高间隙,HC排放平均升高了25%;当混合气浓度处于稳定燃烧区域时,增加50%的活塞环岸高间隙,HC排放平均降低了32%;当冷起动首循环混合气浓度处于浓燃区时,活塞环岸高间隙增加50%,HC排放平均提高了18%.  相似文献   

8.
纵观汽油发动机的工作情况,不难发现,汽车发动机可燃混合气的空燃比和点火时刻,是影响发动机动力性、经济性和排气净化性的两个主要因素。因此,精确地控制空燃比和点火时刻,自然是汽油发动机所面临的主要问题。而可燃混合气配制方法的不同,是两者采用不同机构的主要理论根据。  相似文献   

9.
摩托车发动机怠速是衡量发动机工作是否良好的主要特征之一,也是有关标准中规定的摩托车与发动机的主要性能之一。怠速不良,不仅增加燃油消耗,加速机件磨损,还会使发动机的加速性能和动力性能下降。1发动机怠速1.1怠速不良的3种情况怠速不良包括无怠速、怠速过高、怠速不稳3种情况。无怠速是指怠速不能在15 min内稳定在标定转速±100 r/min内,加大油门至高速后关闭油门,发动机即熄火。起动发动机时需较浓的可燃混合气,据有关资料显示:发动机冷态起动时需要浓度  相似文献   

10.
在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOx的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的递减,从而将混合气的空燃比控制在理论值附近。  相似文献   

11.
众所周知,空燃比与汽车的排放有着非常密切的关系,当供给功率混合气(浓混合气)时,发动机进行大功率输出,但混合气燃烧不完全,会使CO和HC的排放量增大;当供给经济混合气时,燃烧接近于完全燃烧,但是燃烧温度最高,会使NOx排放量增大。化油器是化油器式汽车燃料供给系统中一个十分重要和结构复杂的部件,其主要作用便是根据车辆的行驶状况形成恰当的可燃混合气。  相似文献   

12.
为了降低重型增压燃气发动机燃料消耗和热负荷,并使之运行在稀薄燃烧区,设计了一种宽域氧(UEGO)传感器控制器和基于此控制器快速实现稀薄燃烧控制的方法。该控制器通过采集UEGO、发动机转速和进气压力等信号,精确计算得到当前工况下的空燃比值,并与可标定的目标空燃比值进行比较,判断当前混合气的浓稀状态,向基于理论空燃比控制的燃气发动机ECU实时输出模拟的开关型氧传感器信号。试验表明:控制器结合基于理论空燃比控制的ECU能实现燃气发动机理论空燃比燃烧和稀薄燃烧组合模式的闭环控制。  相似文献   

13.
车用LPG电控发动机排放控制的研究   总被引:2,自引:0,他引:2  
陈贤章  王学合 《汽车工程》2004,26(4):401-404,422
文中所研究的LPG发动机电控系统综合利用了下列控制策略:基于步进电机步数的LPG燃料精确预控制与空燃比闭环控制;优化发动机起动后及暖机过程的空燃比控制;通过提高怠速及推迟点火的催化器快速起燃控制;通过氧传感器的加热以快速实现发动机起动后的空燃比闭环控制。并对1.8L汽油发动机进行了匹配试验,在兼顾发动机动力性及经济性的前提下有害气体排放达到欧Ⅱ法规的50%。  相似文献   

14.
延长三元催化转化器使用寿命的措施   总被引:1,自引:0,他引:1  
三元催化转化器是现代汽车发动机的一种机外净化装置,它能够有效地降低汽车尾气中CO、HC和NOX的含量,满足日益严格的机动车尾气排放要求。要使三元催化转化器正常地发挥降低排污的效果,关键是发动机混合气的空燃比必须控制在理论空燃比(14.7)附近,以防止不完全燃烧,避免未燃混合气进入三元催化转化器内。  相似文献   

15.
氧传感器是将燃烧后的气体情况实时反馈给发动机控制单元的一个关键元件,而发动机电控喷射系统则依据氧传感器提供的信号精确控制混合气浓度。当空气和汽油的混合比例为14.7:1时,为最佳空燃比(空燃比λ是空气质量与燃油质量之比),此时混合气的燃烧最  相似文献   

16.
1使用中三效催化转化器的效率变化及其影响因素在三效催化转化器工作时,首先将NO_x还原成N_2和O_2,只有在排气中含有很少的氧时,这一反应才能顺利进行。浓的混合气使NO_x的转化效率有所上升,但会降低CO和HC的转化效率。稀的混合气有利于CO和HC的转化,但对NO_x的转化效率有所抑制。三效催化转化器对混合气的空燃比非常敏感,所以有必要精确控制进入发动机的可燃混合气的空然比,将可燃混合气的空燃比控制在理  相似文献   

17.
《世界汽车》2002,(12):52-52
发动机"稀燃"技术指通过一定的技术手段,降低发动机混合气中的汽油含量,以达到降低能耗和排气污染目的的技术.采用稀燃技术的汽油发动机,空气与汽油之比(通常是质量比)可达25:1以上(正常情况下,理论空燃比为14.7).  相似文献   

18.
柴油颗粒捕集器(DPF)的最新技术进展(二)--DPNR问世   总被引:1,自引:0,他引:1  
尽管DPNR能同时净化NOx与PM,但是,在稀薄空燃比混合气燃烧时与加浓空燃比混合气燃烧时发和净化机理则不同,所以催化剂总共发生4种化学反应(见图9)。首先,从稀薄空燃比混合气燃烧时的化学反应来加以说明。 在稀薄空燃比混合气燃烧时,排放气体囊的O_2和NO在催化剂铂的作用下,形成NO_2与O(氧原子是一种高反应性的活性氧),它们又与碱金属化合,形成硝酸盐。另一方面,PM  相似文献   

19.
现代轿车电喷发动机上纵横布置有多根橡胶管,大多与进气管相连,利用发动机工作时在进气管内产生的真空作为多种辅助设备的动力源或有关传感器的信号源。发动机进气管真空度的大小及其稳定性与发动机工作的汽缸数、转速、进气系统密封性能、点火性能、混合气空燃比和节气门开度等有关。检测进气管真空度能够较全面地反映发动机各相关零部件的状态及空燃比、点火性能等,具有较高的可信度。  相似文献   

20.
<正>一环保型发动机概述环保型发动机是指安装了三元催化转化器系统,通过氧传感器反馈控制空燃比,使用微电脑对发动机工作性能及尾气排放全方位系统控制,它能精确控制空燃比。环保型发动机与化油器发动机相比具有以下先进性:1.任何工况下都能获得精确空燃比的混合气;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号