首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In densely populated and congested urban areas, the travel times in congested multi‐modal transport networks are generally varied and stochastic in practice. These stochastic travel times may be raised from day‐to‐day demand fluctuations and would affect travelers' route and mode choice behaviors according to their different expectations of on‐time arrival. In view of these, this paper presents a reliability‐based user equilibrium traffic assignment model for congested multi‐modal transport networks under demand uncertainty. The stochastic bus frequency due to the unstable travel time of bus route is explicitly considered. By the proposed model, travelers' route and mode choice behaviors are intensively explored. In addition, a stochastic state‐augmented multi‐modal transport network is adopted in this paper to effectively model probable transfers and non‐linear fare structures. A numerical example is given to illustrate the merits of the proposed model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Recent empirical studies on the value of time and reliability reveal that travel time variability plays an important role on travelers' route choice decision process. It can be considered as a risk to travelers making a trip. Therefore, travelers are not only interested in saving their travel time but also in reducing their risk. Typically, risk can be represented by two different aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability aspect of acceptable travel time, which is defined as the average travel time plus the acceptable additional time (or buffer time) needed to ensure more frequent on‐time arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late arrivals (though infrequent) that have a travel time excessively higher than the acceptable travel time. Most research in the network equilibrium based approach to modeling travel time variability ignores the unreliability aspect of unacceptable late arrivals. This paper examines the effects of both reliability and unreliability aspects in a network equilibrium framework. Specifically, the traditional user equilibrium model, the demand driven travel time reliability‐based user equilibrium model, and the α‐reliable mean‐excess travel time user equilibrium model are considered in the investigation under an uncertain environment due to stochastic travel demand. Numerical results are presented to examine how these models handle risk under travel time variability.  相似文献   

3.
Abstract

This paper investigates the effect of travel time variability on drivers' route choice behavior in the context of Shanghai, China. A stated preference survey is conducted to collect drivers' hypothetical choice between two alternative routes with designated unequal travel time and travel time variability. A binary choice model is developed to quantify trade-offs between travel time and travel time variability across various types of drivers. In the model, travel time and travel time variability are, respectively, measured by expectation and standard deviation of random travel time. The model shows that travel time and travel time variability on a route exert similarly negative effects on drivers' route choice behavior. In particular, it is found that middle-age drivers are more sensitive to travel time variability and less likely to choose a route with travel time uncertainty than younger and elder drivers. In addition, it is shown that taxi drivers are more sensitive to travel time and more inclined to choose a route with less travel time. Drivers with rich driving experience are less likely to choose a route with travel time uncertainty.  相似文献   

4.
This paper develops an efficient probabilistic model for estimating route travel time variability, incorporating factors of time‐of‐day, inclement weather, and traffic incidents. Estimating the route travel time distribution from historical link travel time data is challenging owing to the interactions among upstream and downstream links. Upon creating conditional probability function for each link travel time, we applied Monte Carlo simulation to estimate the total travel time from origin to destination. A numerical example of three alternative routes in the City of Buffalo shows several implications. The study found that weather conditions, except for snow, incur minor impact on off‐peak and weekend travel time, whereas peak travel times suffer great variations under different weather conditions. On top of that, inclement weather exacerbates route travel time reliability, even when mean travel time increases moderately. The computation time of the proposed model is linearly correlated to the number of links in a route. Therefore, this model can be used to obtain all the origin to destination travel time distributions in an urban region. Further, this study also validates the well‐known near‐linear relation between the standard deviation of travel time per unit distance and the corresponding mean value under different weather conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we extend the α-reliable mean-excess traffic equilibrium (METE) model of Chen and Zhou (Transportation Research Part B 44(4), 2010, 493-513) by explicitly modeling the stochastic perception errors within the travelers’ route choice decision processes. In the METE model, each traveler not only considers a travel time budget for ensuring on-time arrival at a confidence level α, but also accounts for the impact of encountering worse travel times in the (1 − α) quantile of the distribution tail. Furthermore, due to the imperfect knowledge of the travel time variability particularly in congested networks without advanced traveler information systems, the travelers’ route choice decisions are based on the perceived travel time distribution rather than the actual travel time distribution. In order to compute the perceived mean-excess travel time, an approximation method based on moment analysis is developed. It involves using the conditional moment generation function to derive the perceived link travel time, the Cornish-Fisher Asymptotic Expansion to estimate the perceived travel time budget, and the Acerbi and Tasche Approximation to estimate the perceived mean-excess travel time. The proposed stochastic mean-excess traffic equilibrium (SMETE) model is formulated as a variational inequality (VI) problem, and solved by a route-based solution algorithm with the use of the modified alternating direction method. Numerical examples are also provided to illustrate the application of the proposed SMETE model and solution method.  相似文献   

6.
Over the last decades, several approaches have been proposed in the literature to incorporate users' perceptions of travel costs, their bounded rationality, and risk‐taking behaviors into network equilibrium modeling for traffic assignment problem. While theoretically advanced, these models often suffer from high complexity and computational cost and often involve parameters that are difficult to estimate. This study proposes an alternative approach where users' imprecise perceptions of travel times are endogenously constructed as fuzzy sets based on the probability distributions of random link travel times. Two decision rules are proposed accordingly to account for users' heterogeneous risk‐taking behaviors, that is, optimistic and pessimistic rules. The proposed approach, namely, the multiclass fuzzy user equilibrium, can be formulated as a link‐based variational inequality model. The model can be solved efficiently, and parameters involved can be either easily estimated or treated as factors for calibration against observed traffic flow data. Numerical examples show that the proposed model can be solved efficiently even for a large‐scale network of Mashhad, Iran, with 2538 links and 7157 origin–destination pairs. The example also illustrates the calibration capability of the proposed model, highlighting that the model is able to produce much more accurate flow estimates compared with the Wardropian user equilibrium model. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Perceived mean-excess travel time is a new risk-averse route choice criterion recently proposed to simultaneously consider both stochastic perception error and travel time variability when making route choice decisions under uncertainty. The stochastic perception error is conditionally dependent on the actual travel time distribution, which is different from the deterministic perception error used in the traditional logit model. In this paper, we investigate the effects of stochastic perception error at three levels: (1) individual perceived travel time distribution and its connection to the classification by types of travelers and trip purposes, (2) route choice decisions (in terms of equilibrium flows and perceived mean-excess travel times), and (3) network performance measure (in terms of the total travel time distribution and its statistics). In all three levels, a curve fitting method is adopted to estimate the whole distribution of interest. Numerical examples are also provided to illustrate and visualize the above analyses. The graphical illustrations allow for intuitive interpretation of the effects of stochastic perception error at different levels. The analysis results could enhance the understanding of route choice behaviors under both (subjective) stochastic perception error and (objective) travel time uncertainty. Some suggestions are also provided for behavior data collection and behavioral modeling.  相似文献   

8.
This paper proposes a new travel time reliability‐based traffic assignment model to investigate the rain effects on risk‐taking behaviours of different road users in networks with day‐to‐day demand fluctuations and variations in travel time. A generalized link travel time function is used to capture the rain effects on vehicle travel times and road conditions. This function is further incorporated into daily demand variations to investigate those travel time variations arising from demand uncertainty and rain condition. In view of these rain effects, road users' perception errors on travel times and risk‐taking behaviours on path choices are incorporated in the proposed model with the use of a logit‐based stochastic user equilibrium framework. This new model is formulated as a variational inequality problem in terms of path flows. A numerical example is used to illustrate the application of the proposed model for assessment of the rain effects on road networks with uncertainty.  相似文献   

9.
Suppose that in an urban transportation network there is a specific advanced traveler information system (ATIS) which acts for reducing the drivers' travel time uncertainty through provision of pre‐trip route information. Because of the imperfect information provided, some travelers are not in compliance with the ATIS advice although equipped with the device. We thus divide all travelers into three groups, one group unequipped with ATIS, another group equipped and in compliance with ATIS advice and the third group equipped but without compliance with the advice. Each traveler makes route choice in a logit‐based manner and a stochastic user equilibrium with multiple user classes is reached for every day. In this paper, we propose a model to investigate the evolutions of daily path travel time, daily ATIS compliance rate and yearly ATIS adoption, in which the equilibrium for every day's route choice is kept. The stability of the evolution model is initially analyzed. Numerical results obtained from a test network are presented for demonstrating the model's ability in depicting the day‐to‐day and year‐to‐year evolutions.  相似文献   

10.
The value of travel time variance   总被引:1,自引:0,他引:1  
This paper considers the value of travel time variability under scheduling preferences that are defined in terms of linearly time varying utility rates associated with being at the origin and at the destination. The main result is a simple expression for the value of travel time variability that does not depend on the shape of the travel time distribution. The related measure of travel time variability is the variance of travel time. These conclusions apply equally to travellers who can freely choose departure time and to travellers who use a scheduled service with fixed headway. Depending on parameters, travellers may be risk averse or risk seeking and the value of travel time may increase or decrease in the mean travel time.  相似文献   

11.
Travellers can benefit from the availability of point‐to‐point driving time estimates on a real time basis for making travel decisions such as route choice at strategic locations (e.g. junctions of major routes). This paper reports a predictive travel time methodology that features a Bayesian approach to fusing and updating information for use in advanced traveller information system. The methodology addresses the issue that data captured in real time on travel conditions becomes obsolete and has archival value only unless it is used as an input to a predictive travel time method for updating the information. The need for fusing real time data with other factors that influence travel time is defined and the concept of predictive travel time is discussed. The methodological framework and its components are advanced and an example application is provided for illustrating the fusion of data captured by infrastructure‐based and mobile technology with model‐based predictions in order to produce expected travel times. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Optimal toll design from a network reliability point of view is addressed in this paper. Improving network reliability is proposed as a policy objective of road pricing. A reliability‐based optimal toll design model, where on the upper level network performance including travel time reliability is optimized, while on the lower level a dynamic user‐equilibrium is achieved, is presented. Road authorities aim to optimize network travel time reliability by setting tolls in a network design problem. Travelers are influenced by these tolls and make route and trip decisions by considering travel times and tolls. Network performance reliability is analyzed for a degradable network with elastic and fluctuated travel demand, which integrates reliability and uncertainty, dynamic network equilibrium models, and Monte Carlo methods. The proposed model is applied to a small hypothesized network for which optimal tolls are derived. The network travel time reliability is indeed improved after implementing optimal tolling system. Trips may have a somewhat higher, but more reliable, travel time.  相似文献   

13.
This paper presents a joint trivariate discrete-continuous-continuous model for commuters’ mode choice, work start time and work duration. The model is designed to capture correlations among random components influencing these decisions. For empirical investigation, the model is estimated using a data set collected in the Greater Toronto Area (GTA) in 2001. Considering the fact that work duration involves medium- to long-term decision making compared to short-term activity scheduling decisions, work duration is considered endogenous to work start time decisions. The empirical model reveals many behavioral details of commuters’ mode choice, work start time and duration decisions. The primary objective of the model is to predict workers’ work schedules according to mode choice, which is considered a skeletal activity schedule in activity-based travel demand models. However, the empirical model reveals many behavioral details of workers’ mode choices and work scheduling. Independent application of the model for travel demand management policy evaluations is also promising, as it provides better value in terms of travel time estimates.  相似文献   

14.
Abstract

A route-based combined model of dynamic deterministic route and departure time choice and a solution method for many origin and destination pairs is proposed. The divided linear travel time model is used to calculate the link travel time and to describe the propagation of flow over time. For the calculation of route travel times, the predictive ideal route travel time concept is adopted. Solving the combined model of dynamic deterministic route and departure time choice is shown to be equivalent to solving simultaneously a system of non-linear equations. A Newton-type iterative scheme is proposed to solve this problem. The performance of the proposed solution method is demonstrated using a version of the Sioux Falls network. This shows that the proposed solution method produces good equilibrium solutions with reasonable computational cost.  相似文献   

15.
Although many individual route choice models have been proposed to incorporate travel time variability as a decision factor, they are typically still deterministic in the sense that the optimal strategy requires choosing one particular route that maximizes utility. In contrast, this study introduces an individual route choice model where choosing a portfolio of routes instead of a single route is the best strategy for a rational traveler who cares about both journey time and lateness when facing stochastic network conditions. The proposed model is compared with UE and SUE models and the difference in both behavioral foundation and model characteristics is highlighted. A numerical example is introduced to demonstrate how such model can be used in traffic assignment problem. The model is then tested with GPS data collected in metropolitan Minneapolis–St. Paul, Minnesota. Our data suggest there is no single dominant route (defined here as a route with the shortest travel time for a 15 day period) in 18% of cases when links travel times are correlated. This paper demonstrates that choosing a portfolio of routes could be the rational choice of a traveler who wants to optimize route decisions under variability.  相似文献   

16.
This study develops a methodology to model transportation network design with signal settings in the presence of demand uncertainty. It is assumed that the total travel demand consists of commuters and infrequent travellers. The commuter travel demand is deterministic, whereas the demand of infrequent travellers is stochastic. Variations in demand contribute to travel time uncertainty and affect commuters’ route choice behaviour. In this paper, we first introduce an equilibrium flow model that takes account of uncertain demand. A two-stage stochastic program is then proposed to formulate the network signal design under demand uncertainty. The optimal control policy derived under the two-stage stochastic program is able to (1) optimize the steady-state network performance in the long run, and (2) respond to short-term demand variations. In the first stage, a base signal control plan with a buffer against variability is introduced to control the equilibrium flow pattern and the resulting steady-state performance. In the second stage, after realizations of the random demand, recourse decisions of adaptive signal settings are determined to address the occasional demand overflows, so as to avoid transient congestion. The overall objective is to minimize the expected total travel time. To solve the two-stage stochastic program, a concept of service reliability associated with the control buffer is introduced. A reliability-based gradient projection algorithm is then developed. Numerical examples are performed to illustrate the properties of the proposed control method as well as its capability of optimizing steady-state performance while adaptively responding to changing traffic flows. Comparison results show that the proposed method exhibits advantages over the traditional mean-value approach in improving network expected total travel times.  相似文献   

17.
The uncertainty associated with public transport services can be partially counteracted by developing real‐time models to predict downstream service conditions. In this study, a hybrid approach for predicting bus trajectories by integrating multiple predictors is proposed. The prediction model combines schedule, instantaneous and historical data. The contribution of each predictor as well as values of respective parameters is estimated by minimizing the prediction error using a linear regression heuristic. The hybrid method was applied to five bus routes in Stockholm, Sweden, and Brisbane, Australia. The results indicate that the hybrid method consistently outperforms the timetable and delay conservation prediction method for different route layouts, passenger demands and operation practices. Model validation confirms model transferability and real‐time applicability. Generating more accurate predictions can help service users adjust their travel plans and service providers to deploy proactive management and control strategies to mitigate the negative effects of service disturbances. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
19.
This paper investigates the optimal transit fare in a simple bimodal transportation system that comprises public transport and private car. We consider two new factors: demand uncertainty and bounded rationality. With demand uncertainty, travelers are assumed to consider both the mean travel cost and travel cost variability in their mode choice decision. Under bounded rationality, travelers do not necessarily choose the travel mode of which perceived travel cost is absolutely lower than the one of the other mode. To determine the optimal transit fare, a bi‐level programming is proposed. The upper‐level objective function is to minimize the mean of total travel cost, whereas the lower‐level programming adopts the logit‐based model to describe users' mode choice behaviors. Then a heuristic algorithm based on a sensitivity analysis approach is designed to solve the bi‐level programming. Numerical examples are presented to illustrate the effect of demand uncertainty and bounded rationality on the modal share, optimal transit fare and system performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a dynamic network‐based approach for short‐term air traffic flow prediction in en route airspace. A dynamic network characterizing both the topological structure of airspace and the dynamics of air traffic flow is developed, based on which the continuity equation in fluid mechanics is adopted to describe the continuous behaviour of the en route traffic. Building on the network‐based continuity equation, the space division concept in cell transmission model is introduced to discretize the proposed model both in space and time. The model parameters are sequentially updated based on the statistical properties of the recent radar data and the new predicting results. The proposed method is applied to a real data set from Shanghai Area Control Center for the short‐term air traffic flow prediction both at flight path and en route sector level. The analysis of the case study shows that the developed method can characterize well the dynamics of the en route traffic flow, thereby providing satisfactory prediction results with appropriate uncertainty limits. The mean relative prediction errors are less than 0.10 and 0.14, and the absolute errors fall in the range of 0 to 1 and 0 to 3 in more than 95% time intervals respectively, for the flight path and en route sector level. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号