首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exclusive pedestrian phase (EPP) has been used in many countries to promote walking around downtown areas by increasing the ease and convenience of pedestrian crossing. However, its applicability has not been systematically demonstrated, especially when an intersection is operated in actuated mode. This paper presents an extensive simulation‐based analysis of the applicability of EPP as compared with a normal concurrent pedestrian‐phase pattern at an isolated intersection controlled by actuated logic. Actuated signal control logics for EPP‐actuated and conventional concurrent pedestrian phase‐actuated controls are developed. Both of these control logics consider pedestrian crossing demands and can adapt to changes in vehicle traffic to reduce vehicle delay as well. A simulation model of a two‐phase controlled intersection is built and calibrated based on field data using VISSIM (PTV Planung Transport Verkehr AG in Karlsruhe, Germany). Extensive analysis is conducted to reveal fully the applicable EPP domain in terms of vehicle traffic demand, pedestrian demand, vehicle turning ratio, and pedestrian diagonal crossing ratio. The results show that the performance and applicable domain of EPP are jointly determined by those five factors. EPP significantly outperforms concurrent pedestrian phase if the vehicle turning ratio is greater than 0.6 and the pedestrian diagonal crossing ratio is greater than 0.6. These results can help traffic engineers in choosing the appropriate pedestrian‐phase patterns at actuated signalized intersections. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Finding the optimal location and signal timing plan is one of the most critical operational issues for a signalized midblock crosswalk on an arterial section, which is increasingly being installed in highly populated areas in developing countries such as China. This paper presents a multiobjective optimization model and an efficient solution algorithm for a one‐ or two‐stage midblock crosswalk on an arterial section. The proposed model aims to produce the optimal location and corresponding signal settings to balance the trade‐off between pedestrian delays and vehicular bandwidth when the signals of the crosswalk and adjacent intersections are coordinated. The proposed model has three distinguishing features: (i) the costs for both pedestrians and vehicles are considered in a unified framework; (ii) the location and signal settings of the midblock crosswalk are simultaneously optimized; and (iii) a multiobjective optimization approach is developed to study the effectiveness of the midblock crosswalk under conditions in which the priorities between pedestrian and vehicle flows differ. A nondominated sorting genetic algorithm II (NSGA II)‐based algorithm is developed to solve the model efficiently. The results of the case study showed that the proposed model would help traffic practitioners, researchers, and authorities properly locate and signalize a one‐ or two‐stage midblock pedestrian crosswalk on an arterial section. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Pedestrian scramble phasing is usually implemented to reduce pedestrian‐vehicle conflicts and therefore increase the safety of the intersection. However, to adequately determine the benefits of scramble phasing, it is necessary to understand how pedestrians react to such an unconventional design. This study investigates changes in pedestrian crossing behavior following the implementation of a scramble phase by examining the spatiotemporal gait parameters (step length and step frequency). This detailed microscopic‐level analysis provides insight into changes in pedestrian walking mechanisms as well as the effect of various pedestrian and intersection characteristics. The study uses video data collected at a scramble phase signalized intersection in Oakland, California. Gait parameters were found to be influenced by pedestrian gender, age, group size, crosswalk length, and pedestrian signal indications. Both average step length and walking speed were significantly higher for diagonally crossing pedestrians compared with pedestrians crossing on the conventional crosswalks. Pedestrians were found to have the tendency to increase their step length more than their step frequency to increase walking speed. It was also found that, compared with men, women generally increase their walking speed by increasing their step frequency more than step length. However, when in non‐compliance with signal indications, women increase their walking speed by increasing their step length more than step frequency. It was also found that older pedestrians do not significantly change their walking behavior when in non‐compliance with signal indications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
There has been a growing interest in using surrogate safety measures such as traffic conflicts to analyse road safety from a broader perspective than collision data alone. This growing interest has been aided by recent advances in automated video‐based traffic conflict analysis. The automation enables accurate calculation of various conflict indicators such as time‐to‐collision and post‐encroachment time. These indicators rely on road users getting within specific temporal and spatial proximity from each other and therefore assume that proximity is a surrogate for conflict severity. However, this assumption may not be valid in many driving environments where close interactions between road users are common. The objective of this paper is to investigate the applicability of time proximity conflict indicators for evaluating pedestrian safety in less‐organized traffic environments with a high mix of road users. Several alternative behavioural conflict indicators based on detecting pedestrian evasive actions are recommended to better measure traffic conflicts in such traffic environments. These indicators represent variations in the spatio‐temporal gait parameters (step length, step frequency and walk ratio) immediately before the conflict point. A highly congested shared intersection in Shanghai, China, with frequent pedestrian conflicts is used as a case study. Traffic conflicts are analysed with the use of automated video‐based analysis techniques. The results showed that evasive action‐based indicators have higher potential to identify pedestrian conflicts and measure their severity in high mix less organized traffic environments than time proximity measures such as time‐to‐collision and post‐encroachment time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
以无信号灯路口人车交通行为为研究对象,对行人和机动车辆在无信号灯路口的整体交通行为进行分类预测。在对路口现场交通情况进行拍摄后,用电脑的分帧技术对所需要的数据进行提取和分类,而后建立BP神经网络模型,确定神经网络的输入变量与输出变量。将样本数据导入神经网络并进行训练和测试后,得出行人和车辆过街类型的分类准确率,并且通过准确率所达到的标准来证明了BP神经网络模型的可行性。  相似文献   

6.
The present study intended to (1) investigate the injury risk of pedestrian casualties involved in traffic crashes at signalized intersections in Hong Kong; (2) determine the effect of pedestrian volumes on the severity levels of pedestrian injuries; and (3) explore the role of spatial correlation in econometric crash‐severity models. The data from 1889 pedestrian‐related crashes at 318 signalized intersections between 2008 and 2012 were elaborately collected from the Traffic Accident Database System maintained by the Hong Kong Transport Department. To account for the cross‐intersection heterogeneity, a Bayesian hierarchical logit model with uncorrelated and spatially correlated random effects was developed. An intrinsic conditional autoregressive prior was specified for the spatial correlation term. Results revealed that (1) signalized intersections with greater pedestrian volumes generally exhibited a lower injury risk; (2) ignoring the spatial correlation potentially results in reduced model goodness‐of‐fit, an underestimation of variability and standard error of parameter estimates, as well as inconsistent, biased, and erroneous inference; (3) special attention should be paid to the following factors, which led to a significantly higher probability of pedestrians being killed or sustaining severe injury: pedestrian age greater than 65 years, casualties with head injuries, crashes that occurred on footpaths that were not obstructed/overcrowded, heedless or inattentive crossing, crashes on the two‐way carriageway, and those that occurred near tram or light‐rail transit stops. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a micro‐simulation modeling framework for evaluating pedestrian–vehicle conflicts in crowded crossing areas. The framework adopts a simulation approach that models vehicles and pedestrians at the microscopic level while satisfying two sets of constraints: (1) flow constraints and (2) non‐collision constraints. Pedestrians move across two‐directional cells as opposed to one‐dimensional lanes as in the case of vehicles; therefore, extra caution is considered when modeling the shared space between vehicles and pedestrians. The framework is used to assess large‐scale pedestrian–vehicle conflicts in a highly congested ring road in the City of Madinah that carries 20 000 vehicles/hour and crossed by 140 000 pedestrians/hour after a major congregational prayer. The quantitative and visual results of the simulation exhibits serious conflicts between pedestrians and vehicles, resulting in considerable delays for pedestrians crossing the road (9 minutes average delay) and slow traffic conditions (average speed <10 km/hour). The model is then used to evaluate the following three mitigating strategies: (1) pedestrian‐only phase; (2) grade separation; and (3) pedestrian mall. A matrix of operational measures of effectiveness for network‐wide performance (e.g., average travel time, average speed) and for pedestrian‐specific performance (e.g., mean speed, mean density, mean delay, mean moving time) is used to assess the effectiveness of the proposed strategies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In many cases, pedestrian crossing demands are distributed discretely along an arterial segment. Demand origins, destinations and crosswalks comprise a pedestrian crossing network. An integrated model for optimizing the quantity, locations and signal settings of mid-block crosswalks simultaneously is proposed to best trade-off the operational performances between pedestrians and vehicles. Pedestrian behavior of choosing crosswalks is captured under a discrete demand distribution. Detour distance and delay at signalized crosswalks are formulated as a measure of pedestrian crossing cost. Maximum bandwidths are modeled in analytical expressions as a measure of vehicular cost. To solve the proposed model, the Non-dominated Sorting Genetic Algorithm II (NSGA II) based algorithm is designed and employed to obtain the Pareto frontier efficiently. From the numerical study, it is found that there exists an optimal number of mid-block crosswalks. Excess available crosswalks may make no contributions to improvement in pedestrian cost when the constraint of the minimum interval between crosswalks and vehicular cost are taken into account. Two-stage crosswalks are more favorable than one-stage ones for the benefits of both pedestrian and vehicles. The study results show promising properties of the proposed method to assist transportation engineers in properly designing mid-block crosswalks along a road segment.  相似文献   

9.
Real‐time signal control operates as a function of the vehicular arrival and discharge process to satisfy a pre‐specified operational performance. This process is often predicted based on loop detectors placed upstream of the signal. In our newly developed signal control for diamond interchanges, a microscopic model is proposed to estimate traffic flows at the stop‐line. The model considers the traffic dynamics of vehicular detection, arrivals, and departures, by taking into account varying speeds, length of queues, and signal control. As the signal control is optimized over a rolling horizon that is divided into intervals, the vehicular detection for and projection into the corresponding horizon intervals are also modeled. The signal control algorithm is based on dynamic programming and the optimization of signal policy is performed using a certain performance measure involving delays, queue lengths, and queue storage ratios. The arrival–discharge model is embedded in the optimization algorithm and both are programmed into AIMSUN, a microscopic stochastic simulation program. AIMSUN is then used to simulate the traffic flow and implement the optimal signal control by accessing internal data including detected traffic demand and vehicle speeds. Sensitivity analysis is conducted to study the effect of selecting different optimization criteria on the signal control performance. It is concluded that the queue length and queue storage ratio are the most appropriate performance measures in real‐time signal control of interchanges. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Macroscopic pedestrian models for bidirectional flow analysis encounter limitations in describing microscopic dynamics at crosswalks. Pedestrian behavior at crosswalks is typically characterized by the evasive effect with conflicting pedestrians and vehicles and the following effect with leading pedestrians. This study proposes a hybrid approach (i.e., route search and social force-based approach) for modeling of pedestrian movement at signalized crosswalks. The key influential factors, i.e., leading pedestrians, conflict with opposite pedestrians, collision avoidance with vehicles, and compromise with traffic lights, are considered. Aerial video data collected at one intersection in Beijing, China were recorded and extracted. A new calibration approach based on a genetic algorithm is proposed that enables optimization of the relative error of pedestrian trajectory in two dimensions, i.e., moving distance and angle. Model validation is conducted by comparison with the observed trajectories in five typical cases of pedestrian crossing with or without conflict between pedestrians and vehicles. The characteristics of pedestrian flow, speed, acceleration, pedestrian-vehicle conflict, and the lane formation phenomenon were compared with those from two competitive models, thus demonstrating the advantage of the proposed model.  相似文献   

11.
Traffic signal timings in a road network can not only affect total user travel time and total amount of traffic emissions in the network but also create an inequity problem in terms of the change in travel costs of users traveling between different locations. This paper proposes a multi‐objective bi‐level programming model for design of sustainable and equitable traffic signal timings for a congested signal‐controlled road network. The upper level of the proposed model is a multi‐objective programming problem with an equity constraint that maximizes the reserve capacity of the network and minimizes the total amount of traffic emissions. The lower level is a deterministic network user equilibrium problem that considers the vehicle delays at signalized intersections of the network. To solve the proposed model, an approach for normalizing incommensurable objective functions is presented, and a heuristic solution algorithm that combines a penalty function approach and a simulated annealing method is developed. Two numerical examples are presented to show the effects of reserve capacity improvement and green time proportion on network flow distribution and transportation system performance and the importance of incorporating environmental and equity objectives in the traffic signal timing problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Urban air quality is generally poor at traffic intersections due to variations in vehicles’ speeds as they approach and leave. This paper examines the effect of traffic, vehicle and road characteristics on vehicular emissions with a view to understand a link between emissions and the most likely influencing and measurable characteristics. It demonstrates the relationships of traffic, vehicle and intersection characteristics with vehicular exhaust emissions and reviews the traffic flow and emission models. Most studies have found that vehicular exhaust emissions near traffic intersections are largely dependent on fleet speed, deceleration speed, queuing time in idle mode with a red signal time, acceleration speed, queue length, traffic-flow rate and ambient conditions. The vehicular composition also affects emissions. These parameters can be quantified and incorporated into the emission models. There is no validated methodology to quantify some non-measurable parameters such as driving behaviour, pedestrian activity, and road conditions  相似文献   

13.
This study investigates the impacts of traffic signal timing optimization on vehicular fuel consumption and emissions at an urban corridor. The traffic signal optimization approach proposed integrates a TRANSIMS microscopic traffic simulator, the VT-Micro model (a microscopic emission and fuel consumption estimation model), and a genetic algorithm (GA)-based optimizer. An urban corridor consisting of four signalized intersections in Charlottesville, VA, USA, is used for a case study. The result of the case study is then compared with the best traffic signal timing plan generated by Synchro using the TRANSIMS microscopic traffic simulator. The proposed approach achieves much better performance than that of the best Synchro solution in terms of air quality, energy and mobility measures: 20% less network-wide fuel consumption, 8–20% less vehicle emissions, and nearly 27% less vehicle-hours-traveled (VHT).  相似文献   

14.
Unfortunately, situations such as flood, hurricanes, chemical accidents, and other events occur frequently more and more. To improve the efficiency and practicality of evacuation management plan, an integrated optimization model of one‐way traffic network reconfiguration and lane‐based non‐diversion routing with crossing elimination at intersection for evacuation is constructed in this paper. It is an integrated model aiming at minimizing the network clearance time based on Cell Transmission Model. A hybrid algorithm with modified genetic algorithm and tabu search method is devised for approximating optimal problem solutions. To verify the effectiveness of the proposed model and solving method, two cases are illustrated in this paper. Through the first example, it can be seen that the proposed model and algorithm can effectively solve the integrated problems, and compared with the objective value of the original network, the network clearance time of the final solution reduces by 47.4%. The calculation results for the realistic topology and size network of Ningbo in China, which locates on the east coast of the Pacific Ocean, justify the practical value of the model and solution method, and solutions under different settings of reduction amount of merging cell capacity embody obvious differences. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
ABSTRACT

In order to improve traffic safety and protect pedestrians, an improved and efficient pedestrian detection method for auto driver assistance systems is proposed. Firstly, an improved Accumulate Binary Haar (ABH) feature extraction algorithm is proposed. In this novel feature, Haar features keep only the ordinal relationship named by binary Haar features. Then, the feature brings in the idea of a Local Binary Pattern (LBP), assembling several neighboring binary Haar features to improve discriminating power and reduce the effect of illumination. Next, a pedestrian classification method based on an improved deep belief network (DBN) classification algorithm is proposed. An improved method of input is constructed using a Restricted Bolzmann Machine (RBM) with T distribution function visible layer nodes, which can convert information on pedestrian features to a Bernoulli distribution, and the Bernoulli distribution can then be used for recognition. In addition, a middle layer of the RBM structure is created, which achieves data transfer between the hidden layer structure and keeps the key information. Finally, the cost-sensitive Support Vector Machine (SVM) classifier is used for the output of the classifier, which could address the class-imbalance problem. Extensive experiments show that the improved DBN pedestrian detection method is better than other shallow classic algorithms, and the proposed method is effective and sufficiently feasible for pedestrian detection in complex urban environments.  相似文献   

16.
In urban emergency evacuation, a potentially large number of evacuees may depend either on transit or other modes, or need to walk a long distance, to access their passenger cars. In the process of approaching the designated pick-up points or parking areas for evacuation, the massive number of pedestrians may cause tremendous burden to vehicles in the roadway network. Responsible agencies often need to contend with congestion incurred by massive vehicles emanating from parking garages, evacuation buses generated from bus stops, and the conflicts between evacuees and vehicles at intersections. Hence, an effective plan for such evacuation needs to concurrently address both the multi-modal traffic route assignment and the optimization of network signal controls for mixed traffic flows. This paper presents an integrated model to produce the optimal distribution of vehicle and pedestrian flows, and the responsive network signal plan for massive mixed pedestrian–vehicle flows within the evacuation zone. The proposed model features its effectiveness in accounting for multiple types of evacuation vehicles, the interdependent relations between pedestrian and vehicle flows via some conversion locations, and the inevitable conflicts between intersection turning vehicle and pedestrian flows. An illustrating example concerning an evacuation around the M&T stadium area has been presented, and the results indicate the promising properties of our proposed model, especially on reflecting the complex interactions between vehicle and pedestrian flows and the favorable use of high-occupancy vehicles for evacuation operations.  相似文献   

17.
This paper examines pedestrian anatomical injuries and crash characteristics in back‐to‐traffic and facing‐traffic crashes. Pedestrian crashes involving pedestrians walking along streets (i.e. with their backs to traffic or facing traffic) have been overlooked in literature. Although this is not the most frequent type of crash, the crash consequence to pedestrians is a safety concern. Combining Taiwan A1A2 police‐reported accident data and data from the National Health Insurance Database from years 2003–2013, this paper examines anatomical injuries and crash characteristics in back‐to‐traffic and facing‐traffic crashes. There were a total of 830 and 2267 pedestrian casualties in back‐to‐traffic and facing‐traffic crashes respectively. The injuries sustained by pedestrians and crash characteristics of these two crash types were compared with those of other crossing types of crashes (nearside crash, nearside dart‐out crash, offside crash, and offside dart‐out crash). Odds of various injuries to body regions were estimated using logistic regressions. Key findings include that the percentage of fatalities in back‐to‐traffic crashes is the highest; logistic models reveal that pedestrians in back‐to‐traffic crashes sustained more head, neck, and spinal injuries than did pedestrians in other crash types, and unlit darkness and non‐built‐up roadways were associated with an increased risk of pedestrian head injuries. Several crash features (e.g. unlit darkness, overtaking manoeuvres, phone use by pedestrians and drivers, and intoxicated drivers) are more frequently evident in back‐to‐traffic crashes than in other types of crashes. The current research suggests that in terms of crash consequence, facing traffic is safer than back to traffic. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents an integrated model to design routing and signal plans for massive mixed pedestrian‐vehicle flows within the evacuation zone. The proposed model, with its embedded formulations for pedestrians and vehicles in the same evacuation network, can effectively take their potential conflicts into account and generate the optimal routing strategies to guide evacuees toward either the pickup locations or their parking areas during an evacuation. The proposed model, enhancing the cell transmission model with the notion of sub‐cells, mainly captures the complex movements in the vehicle‐pedestrian flows and can concurrently optimizes both the signals for pedestrian‐vehicle flows and the movement paths for evacuees. An illustrating example concerning the evacuation around the M&T Bank Stadium area has been used to demonstrate the application potential of the proposed model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, two‐tier mathematical models were developed to simulate the microscopic pedestrian decision‐making process of route choice at signalized crosswalks. In the first tier, a discrete choice model was proposed to predict the choices of walking direction. In the second tier, an exponential model was calibrated to determine the step size in the chosen direction. First, a utility function was defined in the first‐tier model to describe the change of utility in response to deviation from a pedestrian's target direction and the conflicting effects of neighboring pedestrians. A mixed logit model was adopted to estimate the effects of the explanatory variables on the pedestrians' decisions. Compared with the standard multinomial logit model, it was shown that the mixed logit model could accommodate the heterogeneity. The repeated observations for each pedestrian were grouped as panel data to ensure that the parameters remained constant for individual pedestrians but varied among the pedestrians. The mixed logit model with panel data was found to effectively address inter‐pedestrian heterogeneity and resulted in a better fit than the standard multinomial logit model. Second, an exponential model in the second tier was proposed to further determine the step size of individual pedestrians in the chosen direction; it indicates the change in walking speed in response to the presence of other pedestrians. Finally, validation was conducted on an independent set of observation data in Hong Kong. The pedestrians' routes and destinations were predicted with the two‐tier models. Compared with the tracked trajectories, the average error between the predicted destinations and the observed destinations was within an acceptable margin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Most previous works associated with transit signal priority merely focus on the optimization of signal timings, ignoring both bus speed and dwell time at bus stops. This paper presents a novel approach to optimize the holding time at bus stops, signal timings, and bus speed to provide priority to buses at isolated intersections. The objective of the proposed model is to minimize the weighted average vehicle delays of the intersection, which includes both bus delay and impact on nearby intersection traffic, ensuring that buses clear these intersections without being stopped by a red light. A set of formulations are developed to explicitly capture the interaction between bus speed, bus holding time, and transit priority signal timings. Experimental analysis is used to show that the proposed model has minimal negative impacts on general traffic and outperforms the no priority, signal priority only, and signal priority with holding control strategies (no bus speed adjustment) in terms of reducing average bus delays and stops. A sensitivity analysis further demonstrates the potential of the proposed approach to be applied to bus priority control systems in real‐time under different traffic demands, bus stop locations, and maximum speed limits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号