首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Abstract

This paper examines the reliability measures of freight travel time on urban arterials that provide access to an international seaport. The findings indicate that the reliability index calculated by the median of travel time, which is less sensitive to extreme values in a highly skewed distribution, is more appropriate. This paper also examines several statistical distributions of travel time to determine the best fit to the data of freight trips. The results of goodness-of-fit tests indicate that the log-logistic is the best statistical function for freight travel time during the midday off-peak period. However, the lognormal distribution represents a better fit to arterials with heavily congested traffic during peak periods. Additionally, travel time prediction models identify the relationships between travel time, speeds and other factors that affect travel time reliability. The analysis suggests that incident-induced delays and speed fluctuations primarily contributed to the unreliability of freight movement on the urban arterials.  相似文献   

2.
This paper focuses on the tradeoff in time allocation between maintenance activities/travel and discretionary activities/travel. We recognize that people generally must travel a minimum amount of time in order to allocate one unit of time to the activity. This minimum amount of travel is represented by the travel time price, a ratio obtained by dividing the total amount of time traveling to maintenance or discretionary activities by the total amount of time spent on activities of the same type; it is the time equivalent of the monetary price for performing an activity. Using the San Francisco Bay Area 1996 Household Travel Survey data and applying the Almost Ideal Demand System (AIDS) of demand equations, we found that with respect to the time equivalent of income elasticities of maintenance and discretionary activities, the former is less than unity and the latter is greater than unity. In other words, maintenance activities are a necessity and discretionary activities are a luxury. With respect to the own travel time price elasticities, if the travel time price of performing a certain type of activity increases (for reasons such as traffic congestion), one would reduce the time allocated to that type of activity. Time spent on maintenance activities is less elastic than the time spent on discretionary activities. As for the cross travel time price elasticities (changes in time allocated to activity type i in responses to changes in the time price for activity type j), we found that ɛdm>0 and ɛmd>0, suggesting a substitution effect between maintenance and discretionary activities.  相似文献   

3.
In areas like household production and travel choice, time assigned to the different activities plays a key role in addition to consumption as the main variables in utility within the consumer behaviour framework. However, a comprehensive conceptual structure to understand the technological relations between goods consumption and the assignment of time to activities is still lacking. In this paper the problem is reviewed and all possible relations between goods and time are re-formulated. Two general functions are defined and proposed to account for all these relations, forming a new taxonomy for the technical constraints. The resulting consumer behaviour model is used to obtain general expressions for both the value of saving time in constrained activities like travel, and the value of leisure.  相似文献   

4.
A characteristic of low frequency probe vehicle data is that vehicles traverse multiple network components (e.g., links) between consecutive position samplings, creating challenges for (i) the allocation of the measured travel time to the traversed components, and (ii) the consistent estimation of component travel time distribution parameters. This paper shows that the solution to these problems depends on whether sampling is based on time (e.g., one report every minute) or space (e.g., one every 500 m). For the special case of segments with uniform space-mean speeds, explicit formulae are derived under both sampling principles for the likelihood of the measurements and the allocation of travel time. It is shown that time-based sampling is biased towards measurements where a disproportionally long time is spent on the last segment. Numerical experiments show that an incorrect likelihood formulation can lead to significantly biased parameter estimates depending on the shapes of the travel time distributions. The analysis reveals that the sampling protocol needs to be considered in travel time estimation using probe vehicle data.  相似文献   

5.
In probe-based traffic monitoring systems, traffic conditions can be inferred based on the position data of a set of periodically polled probe vehicles. In such systems, the two consecutive polled positions do not necessarily correspond to the end points of individual links. Obtaining estimates of travel time at the individual link level requires the total traversal time (which is equal to the polling interval duration) be decomposed. This paper presents an algorithm for solving the problem of decomposing the traversal time to times taken to traverse individual road segments on the route. The proposed algorithm assumes minimal information about the network, namely network topography (i.e. links and nodes) and the free flow speed of each link. Unlike existing deterministic methods, the proposed solution algorithm defines a likelihood function that is maximized to solve for the most likely travel time for each road segment on the traversed route. The proposed scheme is evaluated using simulated data and compared to a benchmark deterministic method. The evaluation results suggest that the proposed method outperforms the bench mark method and on average improves the accuracy of the estimated link travel times by up to 90%.  相似文献   

6.
    
The uncertainty associated with public transport services can be partially counteracted by developing real‐time models to predict downstream service conditions. In this study, a hybrid approach for predicting bus trajectories by integrating multiple predictors is proposed. The prediction model combines schedule, instantaneous and historical data. The contribution of each predictor as well as values of respective parameters is estimated by minimizing the prediction error using a linear regression heuristic. The hybrid method was applied to five bus routes in Stockholm, Sweden, and Brisbane, Australia. The results indicate that the hybrid method consistently outperforms the timetable and delay conservation prediction method for different route layouts, passenger demands and operation practices. Model validation confirms model transferability and real‐time applicability. Generating more accurate predictions can help service users adjust their travel plans and service providers to deploy proactive management and control strategies to mitigate the negative effects of service disturbances. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
    
Accurate estimation of travel time is critical to the success of advanced traffic management systems and advanced traveler information systems. Travel time estimation also provides basic data support for travel time reliability research, which is being recognized as an important performance measure of the transportation system. This paper investigates a number of methods to address the three major issues associated with travel time estimation from point traffic detector data: data filling for missing or error data, speed transformation from time‐mean speed to space‐mean speed, and travel time estimation that converts the speeds recorded at detector locations to travel time along the highway segment. The case study results show that the spatial and temporal interpolation of missing data and the transformation to space‐mean speed improve the accuracy of the estimates of travel time. The results also indicate that the piecewise constant‐acceleration‐based method developed in this study and the average speed method produce better results than the other three methods proposed in previous studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A retrospective and prospective survey of time-use research   总被引:3,自引:3,他引:3  
The central basis of the activity-based approach to travel demand modeling is that individuals' activity-travel patterns are a result of their time-use decisions within a continuous time domain. This paper reviews earlier theoretical and empirical research in the time-use area, emphasizing the need to examine activities in the context or setting in which they occur. The review indicates the substantial progress made in the past five years and identifies some possible reasons for this sudden spurt and rejuvenation in the field. The paper concludes that the field of time-use and its relevance to activity-travel modeling has gone substantially past the "tip of the iceberg", though it certainly still has a good part of the "iceberg" to uncover. Important future areas of research are identified and discussed.  相似文献   

9.
    
This paper describes the nature of the impacts of walking distances and waiting time on transit use. The relative trade‐offs of walking and transfer components with other transit service attributes are also discussed. A total of 449 completed stated‐preference interviews were collected; with six observations from each respondent, the total number of observations was 2694. This data set was used to estimate the coefficients in different utility functions using a random parameters logit model. The results demonstrated that walking distances to and from transit stops have important and significant nonlinear negative influences on the attractiveness of transit. Transfer waiting time was also shown to have a significant nonlinear negative impact on transit attractiveness. The random parameters logit model had a better model fit than the standard logit model. Some of the findings obtained here are novel, while others are consistent with previous works. These findings have implications for both theory and practice. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a case study is carried out in Hong Kong for demonstration of the Transport Information System (TIS) prototype. A traffic flow simulator (TFS) is presented to forecast the short‐term travel times that can be served as a predicted travel time database for the TIS in Hong Kong. In the TFS, a stochastic deviation coefficient is incorporated to simulate the minute‐by‐minute fluctuation of traffic flows within the peak hour period. The purposes of the case study are: 1) to show the applicability of the TFS for larger‐scale road network; and 2) to illustrate the short‐term forecasting of path travel times in practice. The results of the case study show that the TFS can be applied to real network effectively. The predicted travel times are compared with the observed travel times on the selected paths for an OD pair. The results show that the observed path travel times fall in the 90% confidence interval of the predicted path travel times.  相似文献   

11.
    
Recent empirical studies have revealed that travel time variability plays an important role in travelers' route choice decisions. To simultaneously account for both reliability and unreliability aspects of travel time variability, the concept of mean‐excess travel time (METT) was recently proposed as a new risk‐averse route choice criterion. In this paper, we extend the mean‐excess traffic equilibrium model to include heterogeneous risk‐aversion attitudes and elastic demand. Specifically, this model explicitly considers (1) multiple user classes with different risk‐aversions toward travel time variability when making route choice decisions under uncertainty and (2) the elasticity of travel demand as a function of METT when making travel choice decisions under uncertainty. This model is thus capable of modeling travelers' heterogeneous risk‐averse behaviors with both travel choice and route choice considerations. The proposed model is formulated as a variational inequality problem and solved via a route‐based algorithm using the modified alternating direction method. Numerical analyses are also provided to illustrate the features of the proposed model and the applicability of the solution algorithm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The benefit of using a PHEV comes from its ability to substitute gasoline with electricity in operation. Defined as the proportion of distance traveled in the electric mode, the utility factor (UF) depends mostly on the battery capacity, but also on many other factors, such as travel pattern and recharging pattern. Conventionally, the UFs are calculated based on the daily vehicle miles traveled (DVMT) by assuming motorists leave home in the morning with a full battery, and no charge occurs before returning home in the evening. Such an assumption, however, ignores the impact of the heterogeneity in both travel and charging behavior, such as going back home more than once in a day, the impact of available charging time, and the price of gasoline and electricity. Moreover, the conventional UFs are based on the National Household Travel Survey (NHTS) data, which are one-day travel data of each sample vehicle. A motorist’s daily travel distance variation is ignored. This paper employs the GPS-based longitudinal travel data (covering 3–18 months) collected from 403 vehicles in the Seattle metropolitan area to investigate how such travel and charging behavior affects UFs. To do this, for each vehicle, we organized trips to a series of home and work related tours. The UFs based on the DVMT are found close to those based on home-to-home tours. On the other hand, it is seen that the workplace charge opportunities significantly increase UFs if the CD range is no more than 40 miles.  相似文献   

13.
ABSTRACT

This paper presents a case study of the optimal ALINEA ramp metering system model of a corridor of the metro Atlanta freeway. Based on real-world traffic data, this study estimates the origin-destination matrix for the corridor. Using a stochastic simulation-based optimization framework that combines a micro-simulation model and a genetic algorithm-based optimization module, we determine the optimal parameter values of a combined ALINEA ramp metering system with a queue flush system that minimizes total vehicle travel time. We found that the performance of ramp metering with optimized parameters, which is very sensitive possibly because bottlenecks are correlated, outperforms the no control model with its optimized parameters in terms of reducing total travel time.  相似文献   

14.
In this paper, we extend the α-reliable mean-excess traffic equilibrium (METE) model of Chen and Zhou (Transportation Research Part B 44(4), 2010, 493-513) by explicitly modeling the stochastic perception errors within the travelers’ route choice decision processes. In the METE model, each traveler not only considers a travel time budget for ensuring on-time arrival at a confidence level α, but also accounts for the impact of encountering worse travel times in the (1 − α) quantile of the distribution tail. Furthermore, due to the imperfect knowledge of the travel time variability particularly in congested networks without advanced traveler information systems, the travelers’ route choice decisions are based on the perceived travel time distribution rather than the actual travel time distribution. In order to compute the perceived mean-excess travel time, an approximation method based on moment analysis is developed. It involves using the conditional moment generation function to derive the perceived link travel time, the Cornish-Fisher Asymptotic Expansion to estimate the perceived travel time budget, and the Acerbi and Tasche Approximation to estimate the perceived mean-excess travel time. The proposed stochastic mean-excess traffic equilibrium (SMETE) model is formulated as a variational inequality (VI) problem, and solved by a route-based solution algorithm with the use of the modified alternating direction method. Numerical examples are also provided to illustrate the application of the proposed SMETE model and solution method.  相似文献   

15.
The behavior of time allocation to two types of discretionary activities is formulated as a doubly-censored Tobit model. The model is capable of incorporating cases where the entire amount of time available for discretionary activity is allocated to one type of activity and the other type of activity is not engaged at all. The model is applied to examine individuals' allocation of time to in-home and out-of-home discretionary activities on working days and non-working days, using a weekly time-use data set from the Netherlands. Workers' daily activity patterns vary significantly between working days and non-working days, while it can be expected that patterns of time allocation are correlated between working days and non-working days. A set of error components is introduced into the model to represent this correlation, adopting a mass point approach which requires no assumption about the distribution of the error components. The validity of the model is examined statistically.  相似文献   

16.
    
This paper develops an agent-based modeling approach to predict multi-step ahead experienced travel times using real-time and historical spatiotemporal traffic data. At the microscopic level, each agent represents an expert in a decision-making system. Each expert predicts the travel time for each time interval according to experiences from a historical dataset. A set of agent interactions is developed to preserve agents that correspond to traffic patterns similar to the real-time measurements and replace invalid agents or agents associated with negligible weights with new agents. Consequently, the aggregation of each agent’s recommendation (predicted travel time with associated weight) provides a macroscopic level of output, namely the predicted travel time distribution. Probe vehicle data from a 95-mile freeway stretch along I-64 and I-264 are used to test different predictors. The results show that the agent-based modeling approach produces the least prediction error compared to other state-of-the-practice and state-of-the-art methods (instantaneous travel time, historical average and k-nearest neighbor), and maintains less than a 9% prediction error for trip departures up to 60 min into the future for a two-hour trip. Moreover, the confidence boundaries of the predicted travel times demonstrate that the proposed approach also provides high accuracy in predicting travel time confidence intervals. Finally, the proposed approach does not require offline training thus making it easily transferable to other locations and the fast algorithm computation allows the proposed approach to be implemented in real-time applications in Traffic Management Centers.  相似文献   

17.
Recent empirical studies on the value of time and reliability reveal that travel time variability plays an important role on travelers' route choice decision process. It can be considered as a risk to travelers making a trip. Therefore, travelers are not only interested in saving their travel time but also in reducing their risk. Typically, risk can be represented by two different aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability aspect of acceptable travel time, which is defined as the average travel time plus the acceptable additional time (or buffer time) needed to ensure more frequent on‐time arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late arrivals (though infrequent) that have a travel time excessively higher than the acceptable travel time. Most research in the network equilibrium based approach to modeling travel time variability ignores the unreliability aspect of unacceptable late arrivals. This paper examines the effects of both reliability and unreliability aspects in a network equilibrium framework. Specifically, the traditional user equilibrium model, the demand driven travel time reliability‐based user equilibrium model, and the α‐reliable mean‐excess travel time user equilibrium model are considered in the investigation under an uncertain environment due to stochastic travel demand. Numerical results are presented to examine how these models handle risk under travel time variability.  相似文献   

18.
In a large-scale, real-life peak avoidance experiment, we asked participants to provide estimates of their average in-vehicle travel time during their morning commute. After comparing the reported travel times with the actual corresponding travel times, we found that the average travel times were overstated by a factor of 1.5. We showed that driver- and link-specific characteristics partially explained these exaggerations. Using the stated and revealed preference data, we investigated whether the driver-specific reporting errors were consistent with the drivers’ scheduling behaviors in reality and in hypothetical choice experiments. In both cases, we found no robust evidence that drivers behave as if they misperceive travel times to a similar extent as those they misreported, thereby implying that the reported travel times did not represent the actual or perceived travel times in a truthful manner. The results of this study suggest that caution should be recommended when reported travel time data are used in an uncritical manner during transport research and when determining policy.  相似文献   

19.
    
A common way to determine values of travel time and schedule delay is to estimate departure time choice models, using stated preference (SP) or revealed preference (RP) data. The latter are used less frequently, mainly because of the difficulties to collect the data required for the model estimation. One main requirement is knowledge of the (expected) travel times for both chosen and unchosen departure time alternatives. As the availability of such data is limited, most RP-based scheduling models only take into account travel times on trip segments rather than door-to-door travel times, or use very rough measures of door-to-door travel times. We show that ignoring the temporal and spatial variation of travel times, and, in particular, the correlation of travel times across links may lead to biased estimates of the value of time (VOT). To approximate door-to-door travel times for which no complete measurement is possible, we develop a method that relates travel times on links with continuous speed measurements to travel times on links where relatively infrequent GPS-based speed measurements are available. We use geographically weighted regression to estimate the location-specific relation between the speeds on these two types of links, which is then used for travel time prediction at different locations, days, and times of the day. This method is not only useful for the approximation of door-to-door travel times in departure time choice models, but is generally relevant for predicting travel times in situations where continuous speed measurements can be enriched with GPS data.  相似文献   

20.
    
Developing demand responsive transit systems are important with regard to meeting the travel needs for elderly people. Although Dial‐a‐ride Problems (DARP) have been discussed for several decades, most researchers have worked to develop algorithms with low computational cost under the minimal total travel costs, and fewer studies have considered how changes in travel time might affect the vehicle routes and service sequences. Ignoring such variations in travel time when design vehicle routes and schedules might lead to the production of inefficient vehicle routes, as well as incorrect actual vehicle arrival times at the related nodes. The purpose of this paper is to construct a DARP formulation with consideration of time‐dependent travel times and utilizes the traffic simulation software, DynaTAIWAN, to simulate the real traffic conditions in order to obtain the time‐dependent travel time matrices. The branch‐and‐price approach is introduced for the time‐dependent DARP and tested by examining the sub‐network of Kaohsiung City, Taiwan. The numerical results reveal that the length of the time window can significantly affect the vehicle routes and quantitative measurements. As the length of the time window increases, the objective value and the number of vehicles will reduce significantly. However, the CPU time, the average pickup delay time, the average delivery delay time and the average actual ride time (ART)/direct ride time (DRT) will increase significantly as the length of the time window increases. Designing the vehicle routes to reduce operating costs and satisfy the requirements of customers is a difficult task, and a trade‐off must be made between these goals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号