首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims to develop work zone speed‐flow and capacity models, which incorporate work zone configuration factors including the number of work zones, geometrical alignment, work zone speed limit, and work zone length. On the basis of the traffic data from six work zone sites with various work zone configurations, two nonlinear traffic speed and flow models including work zone configuration factors are developed for the uncongested and congested traffic conditions, respectively. A work zone capacity model is proposed on the basis of the two models. The three models can further be used to examine the effects of work zone configuration factors on the speed‐flow relationship and capacity at work zones. Results show that traffic speed, traffic flow, and work zone capacity increase with the posted speed limit. Traffic speed under uncongested conditions decreases with the geometric alignment, the number of work zones, work zone length, and heavy vehicle percentage. Under congested conditions, the increase of the number of work zones is found to exhibit a larger negative impact on the traffic flow than the increase of geometric alignment. The number of work zones is also found to have the largest negative impacts on work zone capacity, followed by the geometric alignment. Short work zone length exhibits a relatively minor contribution to increasing work zone capacity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Improper mandatory lane change (MLC) maneuvers in the vicinity of highway off-ramp will jeopardize traffic efficiency and safety. Providing an advance warning for lane change necessity is one of the efficient methods to perform systematic lane change management, which encourages smooth MLC maneuvers occurring at proper locations to mitigate the negative effects of MLC maneuvers on traffic flow nearby off-ramp. However, the state of the art indicates the lack of rigorous methods to optimally locate this advance warning so that the maximum benefit can be obtained. This research is motivated to address this gap. Specifically, the proposed approach considers that the area downstream of the advance warning includes two zones: (i) the green zone whose traffic ensures safe and smooth lane changes without speed deceleration (S-MLC); the start point of the green zone corresponding to the location of the advance warning; (ii) the yellow zone whose traffic leads to rush lane change maneuvers with speed deceleration (D-MLC). An optimization model is proposed to search for the optimal green and yellow zones. Traffic flow theory such as Greenshield model and shock wave analysis are used to analyze the impacts of the S-MLC and D-MLC maneuvers on the traffic delay. A grid search algorithm is applied to solve the optimization model. Numerical experiments conducted on the simulation model developed in Paramics 6.9.3 indicate that the proposed optimization model can identify the optimal location to set the advance MLC warning nearby an off-ramp so that the traffic delay resulting from lane change maneuvers is minimized, and the corresponding capacity drop and traffic oscillation can be efficiently mitigated. Moreover, the experiments validated the consistency of the green and yellow zones obtained in the simulation traffic flow and from the optimization model for a given optimally located MLC advance warning under various traffic regimes. The proposed approach can be implemented by roadside mobile warning facility or on-board GPS for human-driven vehicles, or embedded into lane change aid systems to serve connected and automated vehicles. Thus it will greatly contribute to both literature and engineering practice in lane change management.  相似文献   

3.
Work zones exist widely on urban arterials in the cities that are undergoing road construction or maintenance. However, the existing studies on arterial work zones are very limited, especially on the work zones at urban intersections, although they have a severe negative impact on the urban traffic system. For the first time, this study focuses on how work zones reduce intersection capacity. A type of widely observed work zone, the straddling work zone that straddles on a road segment and an intersection, is studied. A linear regression model and a multiplicative model suggested by Highway Capacity Manual are proposed respectively to determine the saturation flow rate of the signal intersection with the straddling work zone. The data of 22 straddling work zones are collected and used to evaluate the performances of the proposed models. The results display that the linear regression model outperforms the multiplicative model suggested by Highway Capacity Manual. The study also reveals that reducing approach (or exit) lanes and the mixture of motor vehicles and non‐motor vehicles (and pedestrians) can significantly decrease the capacity of the intersection with straddling work zone. Therefore, in setting a straddling work zone, workers should try to ensure that the intersection approach and exit are unobstructed and set a separation for non‐motors and pedestrians to avoid mixed traffic flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

Understanding work zone traffic behavior is important for the planning and operation of work zones. The objective of this paper is to develop a mathematical model of work zone traffic flow elements by analyzing the relationships between speed, flow, and density that can be used to estimate the capacity of work zones. Traffic flow data were collected from 22 work zone sites on South Carolina interstate highways. The scatter plots of the collected data demonstrate that the relationship between speed and density does not follow Greenshields’ linear model. A non-linear hyperbolic model was developed to describe the relationship between speed and density. Using this model the capacity of a work zone was estimated to be 1550 passenger cars per hour for 2-lane to 1-lane closures. Adjustments to this capacity value to consider other types of vehicle as well as the work zone intensity are provided. Highway agencies can use this estimated capacity along with anticipated traffic demand to schedule work zone operations to avoid long periods of over-saturation.

The tapered approach to work zone lane closures used by South Carolina is similar to methods used in work zones throughout the world. The authors believe that the methodology described in this paper for modeling work zone traffic as well as estimating work zone capacity is transferable to other countries. The conversion of actual volumes to passenger car equivalents may have to be modified due to the significant differences in traffic makeup between the United States and other countries.  相似文献   

5.
Lane closures due to highway work zones present many challenges to the goal of ensuring smooth traffic operations and a safe environment for both drivers and workers. Late merge behavior at a work zone closure is a dangerous behavior that impacts the traffic conflicts upstream of work zone closures. This paper analyzes the safety impacts of using a signalized lane control strategy at the work zone merge points. To achieve the objective of this research, a field study has been conducted at a highway work zone to collect traffic and driver behavior data, and a two-stage, simulation-based approach is used to analyze the safety impacts of implementing a signalized lane merge control strategy at the studied work zone. In the first stage, micro-simulation models are developed and calibrated based on field data to generate vehicle trajectories. In the second stage, the U.S. Federal Highway Administration’s Surrogate Safety Assessment Model is employed to identify potential conflicts under different traffic conditions. The paper concludes that a proposed signal control device could significantly reduce lane-change conflicts at work zone merge points. In addition, recommendations on the signal cycle length and timing splits are provided.  相似文献   

6.
Roadside trees in Singapore are regularly trimmed for the purpose of traffic safety and roadside tree‐trimming project is one typical type of short‐term work zone projects. To implement such a short‐term work zone project, contractors usually divide an entire work zone into multiple subwork zones with the uniform length. This paper aims to determine an optimal subwork zone strategy for the short‐term work zone projects in four‐lane two‐way freeways with time window and uniform subwork zone length constraints. The deterministic queuing model is employed to estimate total user delay caused by the work zone project by taking into account variable traffic speeds. Based on the user delay estimations, this paper proceeds to build a minimization model subject to time window and uniform length constraints for the optimal subwork zone strategy problem. This paper also presents a variation of the minimization model to examine the impact of unequal subwork zone length constraint. Since these minimization models belong to the mixed‐integer non‐differentiable optimization problems, an iterative algorithm embedding with the genetic simulated annealing method is thus proposed to solve these models. Finally, a numerical example is carried out to investigate the effectiveness of the proposed models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Work zone related traffic delay is an important cost component on freeways with maintenance activities. This study demonstrates that delays may be underestimated by using the deterministic queuing theory. Computer simulation is a valuable approach of estimating delay under a variety of existing and future conditions. However, a single simulation run, which can be quite costly in terms of both computer and analyst time, produces a delay estimate for only one traffic level under one set of conditions. A method is developed in this paper to approximate delays by integrating limited simulation data, obtained from CORSIM and the concept of deterministic queuing theory, while various geometric conditions and time‐varying traffic distribution are considered. A calibrated and validated simulation model that can reflect work zone traffic operations on a segment of Interstate 1–80 in New Jersey is used to generate data for developing the proposed model. The comparison of delays estimated by the deterministic queuing model and the proposed model is conducted, while factors affecting the accuracy of the delay estimates are discussed.  相似文献   

8.
On two‐lane roadways, when provision should be made for alternative one‐way movement (for construction or maintenance), the traffic characteristics differ from normal operation in which no lane is closed. The purpose of this study is to derive optimal strategies for controlling, by means of traffic signals, the one lane operation (in two‐way roadways). In this study, strategies to determine the optimal length of the closed one‐lane section during construction and maintenance work are established. This length minimizes the objective function representing the tradeoff between delay cost and operational cost. Using the length value obtained by the proposed model, plus a timing methodology, the overall cost of operating the closed highway section can be minimized. The sensitivity analysis of the optimal solution for the section length is examined with respect to the input variables. This analysis shows that for very low traffic flow values (less than 100 vph per direction), the solution is very sensitive to fuel price changes, while for greater flow values, the solution is insensitive to this change. Similar results are obtained for changes in the worker's wage which is part of both the operational and the delay cost. That is, the section's length is sensitive to wage changes at low traffic flow and insensitive otherwise. Based on the results presented in this study, it is possible to establish a guideline for the section's length determination. The control measure can emerge from a pair of traffic signals that can be installed at both ends of the closed highway segment. This traffic control system is also described in the study in terms of its components and operational features and advantages.  相似文献   

9.
Portable changeable message signs (PCMSs) have been employed in highway work zones as a temporary traffic control device for decades in the United States. Results of previous research showed that the traditional text-based PCMS had several limitations, such as having a short range of legibility and being difficult to read by elderly and non-English-speaking drivers. A few simulation studies indicated that using graphic-aided PCMSs could likely overcome these limitations. This paper presents the results of field experiments that were conducted to determine the effectiveness of graphic-aided PCMS in reducing vehicle speeds in the upstream of highway work zones. In field experiment Phase I, a full-matrix PCMS was programmed to display a work zone graphic and a flagger graphic, which were similar to the W21-1 sign and W20-7 sign, respectively, specified by the Manual on Uniform Traffic Control Devices. In field experiment Phase II, the PCMS was programmed to display two alternative work zone graphics along with the original work zone graphic. 1115 and 1600 valid vehicle speed data were collected during field experiments Phase I and Phase II, respectively. The results of data analysis suggested that graphic-aided PCMSs reduced mean vehicle speeds between 13% and 17% in the upstream of a work zone. This study provided valuable knowledge to government agencies and the transportation industry on how to regulate and implement graphic-aided PCMS in highway work zones.  相似文献   

10.
A wide array of spatial units has been explored in macro-level modeling. With the advancement of Geographic Information System (GIS) analysts are able to analyze crashes for various geographical units. However, a clear guideline on which geographic entity should be chosen is not present. Macro level safety analysis is at the core of transportation safety planning (TSP) which in turn is a key in many aspects of policy and decision making of safety investments. The preference of spatial unit can vary with the dependent variable of the model. Or, for a specific dependent variable, models may be invariant to multiple spatial units by producing a similar goodness-of-fits. In this study three different crash models were investigated for traffic analysis zones (TAZs), block groups (BGs) and census tracts (CTs) of two counties in Florida. The models were developed for the total crashes, severe crashes and pedestrian crashes in this region. The primary objective of the study was to explore and investigate the effect of zonal variation (scale and zoning) on these specific types of crash models. These models were developed based on various roadway characteristics and census variables (e.g., land use, socio-economic, etc.).It was found that the significance of explanatory variables is not consistent among models based on different zoning systems. Although the difference in variable significance across geographic units was found, the results also show that the sign of the coefficients are reasonable and explainable in all models.Key findings of this study are, first, signs of coefficients are consistent if these variables are significant in models with same response variables, even if geographic units are different. Second, the number of significant variables is affected by response variables and also geographic units.Admittedly, TAZs are now the only traffic related zone system, thus TAZs are being widely used by transportation planners and frequently utilized in research related to macroscopic crash analysis. Nevertheless, considering that TAZs are not delineated for traffic crash analysis but they were designed for the long range transportation plans, TAZs might not be the optimal zone system for traffic crash modeling at the macroscopic level. Therefore, it recommended that other zone systems be explored for crash analysis as well.  相似文献   

11.
This study presents a multilane model for analyzing the dynamic traffic properties of a highway segment under a lane‐closure operation that often incurs complex interactions between mandatory lane‐changing vehicles and traffic at unblocked lanes. The proposed traffic flow formulations employ the hyperbolic model used in the non‐Newtonian fluid dynamics, and assume the lane‐changing intensity between neighboring lanes as a function of their difference in density. The results of extensive simulation experiments indicate that the proposed model is capable of realistically replicating the impacts of lane‐changing maneuvers from the blocked lanes on the overall traffic conditions, including the interrelations between the approaching flow density, the resulting congestion level, and the exiting flow rate from the lane‐closure zone. Our extensive experimental analyses also confirm that traffic conditions will deteriorate dramatically and evolve to the state of traffic jam if the density has exceeded its critical level that varies with the type of lane‐closure operations. This study also provides a convenient way for computing such a critical density under various lane‐closure conditions, and offers a theoretical basis for understanding the formation as well as dissipation of traffic jam.  相似文献   

12.
Most traffic delays in regional evacuations occur at intersections. Lane-based routing is one strategy for reducing these delays. This paper presents a network flow model for identifying optimal lane-based evacuation routing plans in a complex road network. The model is an integer extension of the minimum-cost flow problem. It can be used to generate routing plans that trade total vehicle travel-distance against merging, while preventing traffic crossing-conflicts at intersections. A mixed-integer programming solver is used to derive optimal routing plans for a sample network. Manual capacity analysis and microscopic traffic simulation are used to compare the relative efficiency of the plans. An application is presented for Salt Lake City, Utah.  相似文献   

13.
The benefit, in terms of social surplus, from introducing congestion charging schemes in urban networks is depending on the design of the charging scheme. The literature on optimal design of congestion pricing schemes is to a large extent based on static traffic assignment, which is known for its deficiency in correctly predict travel times in networks with severe congestion. Dynamic traffic assignment can better predict travel times in a road network, but are more computational expensive. Thus, previously developed methods for the static case cannot be applied straightforward. Surrogate‐based optimization is commonly used for optimization problems with expensive‐to‐evaluate objective functions. In this paper, we evaluate the performance of a surrogate‐based optimization method, when the number of pricing schemes, which we can afford to evaluate (because of the computational time), are limited to between 20 and 40. A static traffic assignment model of Stockholm is used for evaluating a large number of different configurations of the surrogate‐based optimization method. Final evaluation is performed with the dynamic traffic assignment tool VisumDUE, coupled with the demand model Regent, for a Stockholm network including 1240 demand zones and 17 000 links. Our results show that the surrogate‐based optimization method can indeed be used for designing a congestion charging scheme, which return a high social surplus. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper proposed a methodology to estimate rear‐end crash potential of the merging vehicles traveling in the merge lane, on the basis of the traffic data extracting from the available videotapes. First, we developed a binary logit model to identify drivers' merging behavior in the work zone merging area. Subsequently, the occurrence potential of rear‐end crash based on time‐to‐collision was computed between the merging vehicle and its neighboring vehicles. The overall crash potential of the merging vehicle was finally determined. It was found that the crash potential decreases with the remaining distance to work zone. Moreover, there will be a rear‐end crash potential of 4.0% if the merging vehicle fails to complete merging at the end of work zone merging area. If the merging vehicle takes an early merge, there will be a lower rear‐end crash potential (1.2%). These findings suggest that we should encourage merging vehicles to take early merges for improving the traffic safety in the work zone merging areas. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A Memetic Algorithm (MA) for the calibration of microscopic traffic flow simulation models is proposed in this study. The proposed MA includes a combination of genetic and simulated annealing algorithms. The genetic algorithm performs the exploration of the search space and identifies a zone where a possible global solution could be located. After this zone has been found, the simulated annealing algorithm refines the search and locates an optimal set of parameters within that zone. The design and implementation of this methodology seeks to enable the generalized calibration of microscopic traffic flow models. Two different Corridor Simulation (CORSIM) vehicular traffic systems were calibrated for this study. All parameters after the calibration were within reasonable boundaries. The calibration methodology was developed independently of the characteristics of the traffic flow models. Hence, it is easily used for the calibration of any other model. The proposed methodology has the capability to calibrate all model parameters, considering multiple performance measures and time periods simultaneously. A comparison between the proposed MA and the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm was provided; results were similar between the two. However, the effort required to fine-tune the MA was considerably smaller when compared to the SPSA. The running time of the MA-based calibration was larger when it was compared to the SPSA running time. The MA still required some knowledge of the model in order to set adequate optimization parameters. The perturbation of the parameters during the mutation process must have been large enough to create a measurable change in the objective function, but not too large to avoid noisy measurements.  相似文献   

16.
Traffic congestion and energy issues have set a high bar for current ground transportation systems. With advances in vehicular communication technologies, collaborations of connected vehicles have becoming a fundamental block to build automated highway transportation systems of high efficiency. This paper presents a distributed optimal control scheme that takes into account macroscopic traffic management and microscopic vehicle dynamics to achieve efficiently cooperative highway driving. Critical traffic information beyond the scope of human perception is obtained from connected vehicles downstream to establish necessary traffic management mitigating congestion. With backpropagating traffic management advice, a connected vehicle having an adjustment intention exchanges control-oriented information with immediately connected neighbors to establish potential cooperation consensus, and to generate cooperative control actions. To achieve this goal, a distributed model predictive control (DMPC) scheme is developed accounting for driving safety and efficiency. By coupling the states of collaborators in the optimization index, connected vehicles achieve fundamental highway maneuvers cooperatively and optimally. The performance of the distributed control scheme and the energy-saving potential of conducting such cooperation are tested in a mixed highway traffic environment by the means of microscopic simulations.  相似文献   

17.
Work zones on motorways necessitate the drop of one or more lanes which may lead to significant reduction of traffic flow capacity and efficiency, traffic flow disruptions, congestion creation, and increased accident risk. Real-time traffic control by use of green–red traffic signals at the motorway mainstream is proposed in order to achieve safer merging of vehicles entering the work zone and, at the same time, maximize throughput and reduce travel delays. A significant issue that had been neglected in previous research is the investigation of the impact of distance between the merge area and the traffic lights so as to achieve, in combination with the employed real-time traffic control strategy, the most efficient merging of vehicles. The control strategy applied for real-time signal operation is based on an ALINEA-like proportional–integral (PI-type) feedback regulator. In order to achieve maximum performance of the control strategy, some calibration of the regulator’s parameters may be necessary. The calibration is first conducted manually, via a typical trial-and-error procedure. In an additional investigation, the recently proposed learning/adaptive fine-tuning (AFT) algorithm is employed in order to automatically fine-tune the regulator parameters. Experiments conducted with a microscopic simulator for a hypothetical work zone infrastructure, demonstrate the potential high benefits of the control scheme.  相似文献   

18.
Vehicle classification systems have important roles in applications related to real‐time traffic management. They also provide essential data and necessary information for traffic planning, pavement design, and maintenance. Among various classification techniques, the length‐based classification technique is widely used at present. However, the undesirable speed estimates provided by conventional data aggregation make it impossible to collect reliable length data from a single‐point sensor during real‐time operations. In this paper, an innovative approach of vehicle classification will be proposed, which achieved very satisfactory results on a single‐point sensor. This method has two essential parts. The first concerns with the procedure of smart feature extraction and selection according to the proposed filter–filter–wrapper model. The model of filter–filter–wrapper is adopted to make an evaluation on the extracted feature subsets. Meanwhile, the model will determine a nonredundant feature subset, which can make a complete reflection on the differences of various types of vehicles. In the second part, an algorithm for vehicle classification according to the theoretical basis of clustering support vector machines (C‐SVMs) was established with the selected optimal feature subset. The paper also uses particle swarm optimization (PSO), with the purpose of searching for an optimal kernel parameter and the slack penalty parameter in C‐SVMs. A total of 460 samples were tested through cross validation, and the result turned out that the classification accuracy was over 99%. In summary, the test results demonstrated that our vehicle classification method could enhance the efficiency of machine‐learning‐based data mining and the accuracy of vehicle classification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This model calculates an optimal investment plan for a highway corridor or number of corridors, subject to budget constraints. The available options include upgrading the current alignment, constructing a bypass highway over a different alignment, or various combinations. The budget constraints can be specified as a total budget restriction, or as an available budget each period. The highway system is described by K different road links. Each link consists of the current alignment which may be described by any number of sections, and a bypass section over a new alignment. The model finds the construction plan for each link that maximizes discounted benefits, subject to the financial constraints on the maintenance and capital expenditures. The problem is formulated as a large combinatorial optimization problem. A Lagrangian relaxation of the budget constraints is used, and the problem decomposes by link. A dynamic programming (DP) model is used to solve for the optimal expansion path for each link, given the dual variables. The sub-gradient dual optimization problem is a linear programming problem which is solved for the optimal dual variables. An application is presented based on the World Bank's Third National Highway Project in India, which is a US$1.3 billion project for upgrading approximately 2000 km of the Indian National Highway System. The project was approved based on results from this model.  相似文献   

20.
This paper presents a GIS-based multi-objective optimization model, particularly designed to aid highway engineers and planners in proposing competitive highway alignment alternatives when building a new highway or expanding an existing highway. The proposed model can effectively examine tradeoffs among various objectives that represent possibly conflicting interests of different stakeholders. A Hybrid Multi-Objective Genetic Algorithm, which utilizes designers’ knowledge about the preference of decision makers, is developed to search for a set of Pareto-optimal solutions with an acceptable level of diversity. Two case studies demonstrate the capability of the proposed approach in providing multiple trade-off solutions. The results indicate that the incorporation of preference information, even if preliminary in nature, has great potential to save computation time and improve the quality of the obtained Pareto-optimal set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号