共查询到20条相似文献,搜索用时 15 毫秒
1.
Flex‐route transit brings together the low cost operability of fixed‐route transit with the flexibility of demand responsive transit, and in recent years, it has become the most popular type of flexible transit service. In this paper, a methodology is proposed to help planners make better decisions regarding the choice between a conventional fixed‐route and a flex‐route policy for a specific transit system with a varying passenger demand. A service quality function is developed to measure the performance of transit systems, and analytical modeling and simulations are used to reproduce transit operation under the two policies. To be closer to reality, two criteria are proposed depending on the processing of rejected requests in the assessment of the service quality function for flex‐route services. In various scenarios, critical demand densities, which represent the switching points between the two competing policies, are derived in a real‐world transit service according to the two criteria. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
2.
A mathematical model is developed to optimize social and fiscal sustainable operation of a feeder bus system considering realistic network and heterogeneous demand. The objective total profit is a nonlinear, mixed integer function, which is maximized by optimizing the number of stops, headway, and fare. The stops are located which maximize the ridership. The demand elasticity for the bus service is dependent on passengers' access distance, wait time, in‐vehicle time, and fare. An optimization algorithm is developed to search for the optimal solution that maximizes the profit. The modeling approach is applied to planning a bus transit system within Woodbridge, New Jersey. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
This paper investigates the optimal transit fare in a simple bimodal transportation system that comprises public transport and private car. We consider two new factors: demand uncertainty and bounded rationality. With demand uncertainty, travelers are assumed to consider both the mean travel cost and travel cost variability in their mode choice decision. Under bounded rationality, travelers do not necessarily choose the travel mode of which perceived travel cost is absolutely lower than the one of the other mode. To determine the optimal transit fare, a bi‐level programming is proposed. The upper‐level objective function is to minimize the mean of total travel cost, whereas the lower‐level programming adopts the logit‐based model to describe users' mode choice behaviors. Then a heuristic algorithm based on a sensitivity analysis approach is designed to solve the bi‐level programming. Numerical examples are presented to illustrate the effect of demand uncertainty and bounded rationality on the modal share, optimal transit fare and system performance. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
4.
Bus rapid transit system is designed to provide high‐quality and cost‐efficient passenger transportation services. In order to achieve this design objective, effective scheduling strategies are required. This research aims at improving the operation efficiency and service quality of a BRT system through integrated optimization of its service headways and stop‐skipping strategy. Based on cost analysis for both passengers and operation agencies, an optimization model is established. A genetic algorithms based algorithm and an application‐oriented solution method are developed. Beijing BRT Line 2 has been chosen as a case study, and the effectiveness of the optimal headways with stop‐skipping services under different demand levels has been analyzed. The results has shown that, at a certain demand level, the proposed operating strategy can be most advantageous for passengers with an accepted increase of operating costs, under which the optimum headway is between 3.5 and 5.5 min for stop‐skipping services during the morning peak hour depending on the demand with the provision of stop‐skipping services. The effectiveness of the optimal headways with stop‐skipping services is compared with those of existing headways and optimal headways without stop‐skipping services. The results show that operating strategies under the optimal headways with stop‐skipping services outperforms the other two operating strategies with respect to total costs and in‐vehicle time for passengers. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
5.
Mojahid Saeed Osman 《运输规划与技术》2013,36(7):714-728
ABSTRACTThis paper describes the development of a probabilistic formulation that provides global optimum selection and allocation of a fleet of buses in a private transportation system of an organization where a third party is hired to provide transportation for its employees and their dependents. In this private transportation system, a fleet of buses is to be selected and allocated to serve employees and their independents on different prescheduled trips along different routes from the organization’s headquarters and residential compound where round-trip times of scheduled trips are subject to uncertainty due to random delays. We propose a probabilistic approach based on 0-1 integer programming for the selection and allocation to determine the optimal number and size of buses assigned to a set of prescheduled trips in a particular time interval. Examples and a case study are presented to illustrate the applicability and suitability of the proposed approach. 相似文献
6.
Unconventional intersection designs have been used to increase the capacity of intersections that are over‐saturated under conventional ones. However, existing unconventional designs typically require extra land space and their effectiveness often depends on drivers' familiarity with the uncommon operating rules. To overcome these challenges, we propose a new unconventional design, where movements that are mutually incompatible under the conventional design can be made compatible of each other by allocating exit lanes to them appropriately, thereby creating opportunities for capacity improvement. We develop a lane‐based capacity optimization model that incorporates the allocation of exit lanes as decision variables. The model is formulated as a Binary Mixed Integer Linear Programming problem, which can be efficiently solved by standard branch‐and‐bound algorithms. Numerical experiments show that significant capacity improvement can be obtained under our design. Besides proposing a new unconventional design, we also contribute to the literature of lane‐based signal optimization methods by providing a novel linear formulation for the latest, yet nonlinear, model described in Wong and Heydecker [Transportation Research Part B 45(4):667–681]. This improvement is methodologically beneficial as linear models are computationally more convenient than nonlinear ones. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
7.
Avishai Ceder 《Transportation》2006,33(2):133-152
A predominant observation in Hong Kong is the continuous loss in ferry patronage. There are two main reasons for this: poor
level-of-service and better competitors. New roads, bridges, and tunnels are serving the buses, and to some extent the railways;
whereas the investment in ferry terminals is relatively at a lower level. On the one hand, there is no need to promote the
ferries in a free market environment; but on the other hand, the ferries have the best safety record, can only relieve some
traffic congestion and need water access that is one of the characteristics of Hong Kong. The goal of this paper is to design
a planning approach combined with an evaluation procedure on how to make the best use of the existing water and pier resources
in Hong Kong through the provision of commercially viable ferry services. The approach used covers the impact of future developments
planning up to 2006 comprising all public transport modes in Hong Kong (heavy rail, metro, bus, and ferry). The planning tool
is based on a newly developed multi-objective evaluation method in order to assess the ferry routes with scientific, practical,
and simplified analyses for future use. This assessment is applied to the existing ferry routes and candidate routes and can
also be carried out on an individual route basis or on a given set of routes. The objective functions set forth analytically
in the evaluation method take into account the interests of the three participants: the passengers, the operators and the
government. The proposed ferry network design formulation and the suggested new ferry routes will have a positive impact on
changing the ferry system’s image in Hong Kong. 相似文献
8.
Due to the stochastic nature of traffic conditions and demand fluctuations, it is a challenging task for operators to maintain reliable services, and passengers often suffer from longer travel times. A failure to consider this issue while planning bus services may lead to undesirable results, such as higher costs and a deterioration in level of service. Considering headway variation at route stops, this paper develops a mathematical model to optimize bus stops and dispatching headways that minimize total cost, consisting of both user and operator costs. A Genetic Algorithm is applied to search for a cost-effective solution in a real-world case study of a bus transit system, which improves service reliability in terms of a reduced coefficient of variation of headway. 相似文献
9.
We develop a methodology to optimize the schedule coordination of a full‐stop service pattern and a short‐turning service pattern on a bus route. To capture the influence of bus crowding and seat availability on passengers' riding experience, we develop a Markov model to describe the seat‐searching process of a passenger and an approach to estimate the transition probabilities of the Markov model. An optimization model that incorporates the Markov model is proposed to design the short‐turning strategy. The proposed model minimizes the total cost, which includes operational cost, passengers' waiting time cost and passengers' in‐vehicle travel time cost. Algorithm is developed to produce optimal values of the decision variables. The proposed methodology is evaluated in a case study. Compared with methodologies that ignore the effect of bus crowding, the proposed methodology could better balance bus load along the route and between two service patterns, provide passengers with better riding experience and reduce the total cost. In addition, it is shown that the optimal design of the short‐turning strategy is sensitive to seat capacity. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
10.
Yavuz Y. Ulusoy 《运输规划与技术》2015,38(4):409-424
This paper attempts to optimize bus service patterns (i.e., all-stop, short-turn, and express) and frequencies which minimize total cost, considering transfer demand elasticity. A mathematical model is developed based on the objective total cost for a generalized bus route, which is optimized subject to a set of constraints ensuring sufficient capacity, an operable bus fleet, and service frequency conservation. To optimize the integrated service of a bus route with many stops, which is a combinatorial optimization problem, a genetic algorithm is developed and applied to search for the solution. A case study, based on a real-world bus route in New Jersey, is conducted to demonstrate the applicability and effectiveness of the developed model and the solution algorithm. Results show that the proposed methodology is fairly efficient, and the optimized bus service significantly reduces total cost. 相似文献
11.
This paper presents a mathematical model to plan emergencies in a densely populated urban zone where a certain numbers of pedestrians depend on transit for evacuation. The proposed model features an integrated operational framework, which simultaneously guides evacuees through urban streets and crosswalks (referred to as “the pedestrian network”) to designated pickup points (e.g., bus stops), and routes a fleet of buses at different depots to those pick‐up points and transports evacuees to their destinations or safe places. In this level, the buses are routed through the so‐called “vehicular network.” An integrated mixed integer linear program that can effectively take into account the interactions between the aforementioned two networks is formulated to find the maximal evacuation efficiency in two networks. Because the large instances of the proposed model are mathematically difficult to solve to optimality, a two‐stage heuristic is developed to solve larger instances of the model. Results from hundreds of numerical examples analysis indicate that proposed heuristic works well in providing (near) optimal or feasibly good solutions for medium‐scale to large‐scale instances that may arise in real transit‐based evacuation situations in a much shorter amount of computational time compared with cplex (can find optimal/feasible solutions for only five instances within 3 hours of running). Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
12.
Avishai Ceder 《先进运输杂志》2013,47(6):595-618
The idea of designing an integrated smart feeder/shuttle service stemmed from the need to overcome the problem of using an excessive number of cars arriving and parking at a train station within the same time span. This problem results in high parking demand around the train station. Moreover, some potential train riders will, instead, use their cars and hence become a party to increasing the traffic congestion. This work develops a new idea of an integrated and innovative feeder/shuttle system with new operating and routing concepts. The fulfilled objectives are as follows: (i) to construct and examine different operating strategies from both the user and operator perspectives; (ii) to examine different routing models and scenarios; and (iii) to construct a simulation tool for (i) and (ii). Ten different routing strategies are examined, with all the combinations of fixed/flexible routes, fixed/flexible schedules, a unidirectional or bidirectional concept, and shortcut (shortest path) and/or short‐turn (turnaround) concepts. These strategies are investigated by employing a simulation model specifically developed and constructed for this purpose. This simulation model is used in a case study of Castro Valley in California in which the feeder/shuttle service is coordinated with the Bay Area Rapid Transit service, and the 10 routing strategies are compared in regard to four fleet‐size scenarios. One of the interesting results found is that the fixed‐route and flexible‐route concepts are comparable in performance measures when applying a combination of operating strategies. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
13.
This study seeks to online calibrate the parameters of aggregate evacuee behavior models used in a behavior‐consistent information‐based control module for determining information strategies for real‐time evacuation operations. It enables the deployment of an operational framework for mass evacuation that integrates three aspects underlying an evacuation operation: demand (evacuee behavior), supply (network management), and disaster characteristics. To attain behavior‐consistency, the control module factors evacuees' likely responses to the disseminated information in determining information‐based control strategies. Hence, the ability of the behavior models to predict evacuees' likely responses is critical to the effectiveness of traffic routing by information strategies. The mixed logit structure is used for the aggregate behavior models to accommodate the behavioral heterogeneity across the population. An online calibration problem is proposed to calibrate the random parameters in the behavior models by using the least square estimator to minimize the gap between the predicted network flows and unfolding traffic dynamics. Background traffic, an important but rarely studied issue for modeling evacuation traffic, is also accounted for in the proposed problem. Numerical experiments are conducted to illustrate the importance of the calibration problem for addressing the system consistency issues and integrating the demand, supply, and disaster characteristics for more efficient evacuation operations. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
14.
Frequency setting takes place at the strategic and tactical planning stages of public transportation systems. The problem consists in determining the time interval between subsequent vehicles for a given set of lines, taking into account interests of users and operators. The result of this stage is considered as input at the operational level. In general, the problem faced by planners is how to distribute a given fleet of buses among a set of given lines. The corresponding decisions determine the frequency of each line, which impacts directly on the waiting time of the users and operator costs. In this work, we consider frequency setting as the problem of minimizing simultaneously users' total travel time and fleet size, which represents the interest of operators. There is a trade‐off between these two measures; therefore, we face a multi‐objective problem. We extend an existing single‐objective formulation to account explicitly for this trade‐off, and propose a Tabu Search solving method to handle efficiently this multi‐objective variant of the problem. The proposed methodology is then applied to a real medium‐sized problem instance, using data of Puerto Montt, Chile. We consider two data sets corresponding to morning‐peak and off‐peak periods. The results obtained show that the proposed methodology is able to improve the current solution in terms of total travel time and fleet size. In addition, the proposed method is able to efficiently suggest (in computational terms) different trade‐off solutions regarding the conflicting objectives of users and operators. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
15.
In this paper, reasonable paths in transit networks are defined as possible paths that satisfy the acceptable time criterion and transfer‐walk criterion. A recursive algorithm for finding all of the reasonable paths in a transit network that does not involve a rapid increase in program run‐time with network size is presented. Realistic transit networks in Hong Kong and Guangzhou were selected as case studies of the different phases of the development of a trip planning system. Transport planning practitioners and potential users were invited to test the system to evaluate its performance. The results of the prototype evaluation were satisfactory, and the viability of the system as a useful tool for supporting decision‐making has been confirmed by the positive feedback that was obtained from survey questionnaires. 相似文献
16.
Multi-Airport Systems (MAS), or Metroplexes, serve air traffic demand in cities with two or more airports. Due to the spatial proximity and operational interdependency of the airports, Metroplex airspaces are characterized by high complexity, and current system structures fail to provide satisfactory utilization of the available airspace resources. In order to support system-level design and management towards increased operational efficiency in such systems, an accurate depiction of major demand patterns is a prerequisite. This paper proposes a framework for the robust identification of significant air traffic flow patterns in Metroplex systems, which is aligned with the dynamic route service policy for the effective management of Metroplex operations. We first characterize deterministic demand through a spatio-temporal clustering algorithm that takes into account changes in the traffic flows over the planning horizon. Then, in order to handle uncertainties in the demand, a Distributionally Robust Optimization (DRO) approach is proposed, which takes into account demand variations and prediction errors in a robust way to ensure the reliability of the demand identification. The DRO-based approach is applied on pre-tactical (i.e. one-day planning) as well as operational levels (i.e. 2-h rolling horizon). The framework is applied to Time Based Flow Management (TBFM) data from the New York Metroplex. The framework and results are validated by Subject Matter Experts (SMEs). 相似文献
17.
Developing demand responsive transit systems are important with regard to meeting the travel needs for elderly people. Although Dial‐a‐ride Problems (DARP) have been discussed for several decades, most researchers have worked to develop algorithms with low computational cost under the minimal total travel costs, and fewer studies have considered how changes in travel time might affect the vehicle routes and service sequences. Ignoring such variations in travel time when design vehicle routes and schedules might lead to the production of inefficient vehicle routes, as well as incorrect actual vehicle arrival times at the related nodes. The purpose of this paper is to construct a DARP formulation with consideration of time‐dependent travel times and utilizes the traffic simulation software, DynaTAIWAN, to simulate the real traffic conditions in order to obtain the time‐dependent travel time matrices. The branch‐and‐price approach is introduced for the time‐dependent DARP and tested by examining the sub‐network of Kaohsiung City, Taiwan. The numerical results reveal that the length of the time window can significantly affect the vehicle routes and quantitative measurements. As the length of the time window increases, the objective value and the number of vehicles will reduce significantly. However, the CPU time, the average pickup delay time, the average delivery delay time and the average actual ride time (ART)/direct ride time (DRT) will increase significantly as the length of the time window increases. Designing the vehicle routes to reduce operating costs and satisfy the requirements of customers is a difficult task, and a trade‐off must be made between these goals. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
18.
Conventional and flexible bus services may be combined to better serve regions with a wide range of characteristics. If demand densities and resulting service frequencies are low, the coordination of bus arrivals at transfer stations may significantly reduce passenger transfer times. A method is proposed for integrating, coordinating, and optimizing bus services while considering many‐to‐many travel patterns, demand elasticity, financial constraints, and appropriate service type for various regions. The objective is to maximize welfare, that is, the sum of producer and consumer surplus. The problem is solved with a hybrid optimization method, in which a genetic algorithm with bounded integer variables is selected for solving one of the subproblems. The service types, fares, headways, and service zone sizes are jointly optimized. Sensitivity analyses explore how the choice among conventional and flexible busses depends on the demand, subsidy, and demand elasticity parameters. The results also show that welfare can increase due to coordination, and these increases are found to be higher in cases with high demand or low subsidy. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
19.
The benefit, in terms of social surplus, from introducing congestion charging schemes in urban networks is depending on the design of the charging scheme. The literature on optimal design of congestion pricing schemes is to a large extent based on static traffic assignment, which is known for its deficiency in correctly predict travel times in networks with severe congestion. Dynamic traffic assignment can better predict travel times in a road network, but are more computational expensive. Thus, previously developed methods for the static case cannot be applied straightforward. Surrogate‐based optimization is commonly used for optimization problems with expensive‐to‐evaluate objective functions. In this paper, we evaluate the performance of a surrogate‐based optimization method, when the number of pricing schemes, which we can afford to evaluate (because of the computational time), are limited to between 20 and 40. A static traffic assignment model of Stockholm is used for evaluating a large number of different configurations of the surrogate‐based optimization method. Final evaluation is performed with the dynamic traffic assignment tool VisumDUE, coupled with the demand model Regent, for a Stockholm network including 1240 demand zones and 17 000 links. Our results show that the surrogate‐based optimization method can indeed be used for designing a congestion charging scheme, which return a high social surplus. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
20.
Recent empirical studies have revealed that travel time variability plays an important role in travelers' route choice decisions. To simultaneously account for both reliability and unreliability aspects of travel time variability, the concept of mean‐excess travel time (METT) was recently proposed as a new risk‐averse route choice criterion. In this paper, we extend the mean‐excess traffic equilibrium model to include heterogeneous risk‐aversion attitudes and elastic demand. Specifically, this model explicitly considers (1) multiple user classes with different risk‐aversions toward travel time variability when making route choice decisions under uncertainty and (2) the elasticity of travel demand as a function of METT when making travel choice decisions under uncertainty. This model is thus capable of modeling travelers' heterogeneous risk‐averse behaviors with both travel choice and route choice considerations. The proposed model is formulated as a variational inequality problem and solved via a route‐based algorithm using the modified alternating direction method. Numerical analyses are also provided to illustrate the features of the proposed model and the applicability of the solution algorithm. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献